Jypyter

JupyterLab е следващото поколение уеб базиран потребителски интерфейс за Project Jupyter.

  • JupyterLab ви дава възможност да работите с документи и дейности като Jupyter Notebooks, текстови редактори, терминали и персонализирани компоненти по гъвкав, интегриран и разширяем начин.

  • Можете да организирате множество документи и дейности едно до друго в работната област, като използвате раздели и разделители.

  • Документите и дейностите се интегрират помежду си, позволявайки нови работни потоци за интерактивно изчисляване.

Потребителски интерфейс

  • Ляв панел - File explorer, актвини кърнели, команди, инспектор на клетките, отворени табове.
  • Главно меню - основни и често използвани операции.
  • Работен плот - Динамичен плот за визуализация на различни прозорци.
  • Лента с интрументи.

Инсталация на Jupyter

Чрез conda:

    conda install ipython jupyter

Чрез pip:

    # first, always upgrade pip!
    pip install --upgrade pip
    pip install --upgrade ipython jupyterlab

Стартиране на jupyter lab server:

    jupyter lab

Препоръчваме инсталиране и стартиране на сървърва от pyenv или pipenv виртуална среда.

Видове документи и прозорци

  • Launcher
  • Notebook
  • Console
  • Terminal
  • Plain file

Demo Interactive Console

In [1]:
demo_interactive_cnonsole = 3

Добавяне на ipython кърнел от друга среда:

Създайте нова среда и изпълнете:

pyenv activate fmi-second
pip install pip -U
pip install ipykernel
python -m ipykernel install --user --name fmi-second --display-name "Python Fmi Second"

Jupyter Notebook

  • Notebooks разширява конзолния подход към интерактивните изчисления в качествено нова посока.
  • Предоставя уеб-базирано приложение, подходящо за заснемане на целия изчислителен процес: разработване, документиране и изпълнение на код, както и съобщаване на резултатите.
  • Jupyter notebook съчетава два компонента:
  • Уеб приложение: браузърно средство за интерактивно създаване на документи, които съчетават обяснителен текст, математика, изчисления и техния мултимедиен изход.
  • Notebooks документи: представяне на цялото съдържание, видимо в уеб приложението, включително входове и изходи на изчисленията, обяснителен текст, математика, изображения и мултимедийни изображения на обекти.

Основни характеристики на уеб приложението

  • Редактиране на код в браузър с автоматично подчертаване на синтаксиса, подравняване и дописване на имена.
  • Способност да се изпълнява код от браузъра, с резултатите от изчисленията прикрепени към кода, който ги генерира.
  • Показване на резултата от изчисляването чрез използване на мултимедийни представяния, като HTML, LaTeX, PNG, SVG и т.н.
  • Възможност за вградено изобразяване на графики от библиотеки като matplotlib.
  • Разширена възможност за редактиране в браузъра на Markdown синтаксис.
  • Способност лесно да се включва математическа нотация в рамките на клетките, използвайки LaTeX и се възпроизвежда от MathJax.

Notebook документи

  • Notebook документите съдържат входове и изходи на интерактивна сесия, както и допълнителен текст, който придружава кода, но не е предназначен за изпълнение.
  • По този начин файловете на ноутбуците могат да служат като пълен изчислителен запис на сесия, като се вмъкват изпълнимия код с обяснителен текст, математика и богато представяне на получените обекти.
  • Тези документи са представени чрез JSON файлове и се запазват с разширението .ipynb. Тъй като JSON е формат на обикновен текст, те подлежат на версифициране и споделяне с колеги.
  • Notebooks могат да бъдат експортирани в редица статични формати, включително HTML (например за публикации в блогове), reStructuredText, LaTeX, PDF и слайдшоу чрез командата nbconvert.
  • Освен това всеки .ipynb, достъпен от публичен URL адрес, може да бъде споделен чрез Jupyter Notebook Viewer (nbviewer).
  • nbviewer е просто nbconvert като уеб услуга, така че можете да направите свои собствени статични конвертирания с nbconvert, без да разчитате на nbviewer.
  • GitHub поддържа правилното представяне на notebooks.

Структура на ноутбука

  • Ноутбука се състои от поредица от клетки.
  • Клетката е многоредово поле за въвеждане на текст и съдържанието му може да бъде изпълнено чрез Shift-Enter или чрез щракване върху бутона "Play" от лентата с инструменти или Cell, Run в лентата с менюта.

  • Изпълняващото поведение на клетката се определя от типа клетка.

  • Има три типа клетки: кодови клетки, клетки за маркиране и сурови клетки. Всяка клетка започва да бъде кодова клетка, но нейният тип може да бъде променен чрез падащо меню на лентата с инструменти (което първоначално ще бъде "Код") или чрез клавишни комбинации.

Code cells

  • Кодовата клетка ви позволява да редактирате и записвате нов код, като поддържа syntax hightlight.
  • Езикът на програмиране, който използвате, зависи от ядрото, а ядрото по подразбиране (IPython) изпълнява Python код.

  • Когато кодовата клетка се изпълни, кодът, който съдържа, се изпраща към ядрото, свързано с notebook-a.

  • Резултатите, които се връщат от това изчисление, се показват в notebook-a като изход на клетката.
  • Изходът не се ограничава до текст, а са възможни и много други форми на изход, включително matplotlib фигури и HTML таблици (използвани например в пакета за анализ на pandas).
  • Това е известно като богатото изображение на IPython.
In [2]:
print("Hello")
Hello
In [3]:
x = 3 
print('в среадата')
z = 8

x * z
в среадата
Out[3]:
24
In [4]:
print(x)
print(z)
3
8
In [5]:
class RepresentHTML:
    def _repr_html_(self):
        return "<h3 style='color:blue'>I am a blue HTML header</h3>"
In [6]:
RepresentHTML()
Out[6]:

I am a blue HTML header

Help в клетки за изпълнение

?

??

shift + tab

In [7]:
?
IPython -- An enhanced Interactive Python
=========================================

IPython offers a fully compatible replacement for the standard Python
interpreter, with convenient shell features, special commands, command
history mechanism and output results caching.

At your system command line, type 'ipython -h' to see the command line
options available. This document only describes interactive features.

GETTING HELP
------------

Within IPython you have various way to access help:

  ?         -> Introduction and overview of IPython's features (this screen).
  object?   -> Details about 'object'.
  object??  -> More detailed, verbose information about 'object'.
  %quickref -> Quick reference of all IPython specific syntax and magics.
  help      -> Access Python's own help system.

If you are in terminal IPython you can quit this screen by pressing `q`.


MAIN FEATURES
-------------

* Access to the standard Python help with object docstrings and the Python
  manuals. Simply type 'help' (no quotes) to invoke it.

* Magic commands: type %magic for information on the magic subsystem.

* System command aliases, via the %alias command or the configuration file(s).

* Dynamic object information:

  Typing ?word or word? prints detailed information about an object. Certain
  long strings (code, etc.) get snipped in the center for brevity.

  Typing ??word or word?? gives access to the full information without
  snipping long strings. Strings that are longer than the screen are printed
  through the less pager.

  The ?/?? system gives access to the full source code for any object (if
  available), shows function prototypes and other useful information.

  If you just want to see an object's docstring, type '%pdoc object' (without
  quotes, and without % if you have automagic on).

* Tab completion in the local namespace:

  At any time, hitting tab will complete any available python commands or
  variable names, and show you a list of the possible completions if there's
  no unambiguous one. It will also complete filenames in the current directory.

* Search previous command history in multiple ways:

  - Start typing, and then use arrow keys up/down or (Ctrl-p/Ctrl-n) to search
    through the history items that match what you've typed so far.

  - Hit Ctrl-r: opens a search prompt. Begin typing and the system searches
    your history for lines that match what you've typed so far, completing as
    much as it can.

  - %hist: search history by index.

* Persistent command history across sessions.

* Logging of input with the ability to save and restore a working session.

* System shell with !. Typing !ls will run 'ls' in the current directory.

* The reload command does a 'deep' reload of a module: changes made to the
  module since you imported will actually be available without having to exit.

* Verbose and colored exception traceback printouts. See the magic xmode and
  xcolor functions for details (just type %magic).

* Input caching system:

  IPython offers numbered prompts (In/Out) with input and output caching. All
  input is saved and can be retrieved as variables (besides the usual arrow
  key recall).

  The following GLOBAL variables always exist (so don't overwrite them!):
  _i: stores previous input.
  _ii: next previous.
  _iii: next-next previous.
  _ih : a list of all input _ih[n] is the input from line n.

  Additionally, global variables named _i<n> are dynamically created (<n>
  being the prompt counter), such that _i<n> == _ih[<n>]

  For example, what you typed at prompt 14 is available as _i14 and _ih[14].

  You can create macros which contain multiple input lines from this history,
  for later re-execution, with the %macro function.

  The history function %hist allows you to see any part of your input history
  by printing a range of the _i variables. Note that inputs which contain
  magic functions (%) appear in the history with a prepended comment. This is
  because they aren't really valid Python code, so you can't exec them.

* Output caching system:

  For output that is returned from actions, a system similar to the input
  cache exists but using _ instead of _i. Only actions that produce a result
  (NOT assignments, for example) are cached. If you are familiar with
  Mathematica, IPython's _ variables behave exactly like Mathematica's %
  variables.

  The following GLOBAL variables always exist (so don't overwrite them!):
  _ (one underscore): previous output.
  __ (two underscores): next previous.
  ___ (three underscores): next-next previous.

  Global variables named _<n> are dynamically created (<n> being the prompt
  counter), such that the result of output <n> is always available as _<n>.

  Finally, a global dictionary named _oh exists with entries for all lines
  which generated output.

* Directory history:

  Your history of visited directories is kept in the global list _dh, and the
  magic %cd command can be used to go to any entry in that list.

* Auto-parentheses and auto-quotes (adapted from Nathan Gray's LazyPython)

  1. Auto-parentheses
        
     Callable objects (i.e. functions, methods, etc) can be invoked like
     this (notice the commas between the arguments)::
       
         In [1]: callable_ob arg1, arg2, arg3
       
     and the input will be translated to this::
       
         callable_ob(arg1, arg2, arg3)
       
     This feature is off by default (in rare cases it can produce
     undesirable side-effects), but you can activate it at the command-line
     by starting IPython with `--autocall 1`, set it permanently in your
     configuration file, or turn on at runtime with `%autocall 1`.

     You can force auto-parentheses by using '/' as the first character
     of a line.  For example::
       
          In [1]: /globals             # becomes 'globals()'
       
     Note that the '/' MUST be the first character on the line!  This
     won't work::
       
          In [2]: print /globals    # syntax error

     In most cases the automatic algorithm should work, so you should
     rarely need to explicitly invoke /. One notable exception is if you
     are trying to call a function with a list of tuples as arguments (the
     parenthesis will confuse IPython)::
       
          In [1]: zip (1,2,3),(4,5,6)  # won't work
       
     but this will work::
       
          In [2]: /zip (1,2,3),(4,5,6)
          ------> zip ((1,2,3),(4,5,6))
          Out[2]= [(1, 4), (2, 5), (3, 6)]

     IPython tells you that it has altered your command line by
     displaying the new command line preceded by -->.  e.g.::
       
          In [18]: callable list
          -------> callable (list)

  2. Auto-Quoting
    
     You can force auto-quoting of a function's arguments by using ',' as
     the first character of a line.  For example::
       
          In [1]: ,my_function /home/me   # becomes my_function("/home/me")

     If you use ';' instead, the whole argument is quoted as a single
     string (while ',' splits on whitespace)::
       
          In [2]: ,my_function a b c   # becomes my_function("a","b","c")
          In [3]: ;my_function a b c   # becomes my_function("a b c")

     Note that the ',' MUST be the first character on the line!  This
     won't work::
       
          In [4]: x = ,my_function /home/me    # syntax error
In [8]:
open?
Signature: open(file, mode='r', buffering=-1, encoding=None, errors=None, newline=None, closefd=True, opener=None)
Docstring:
Open file and return a stream.  Raise IOError upon failure.

file is either a text or byte string giving the name (and the path
if the file isn't in the current working directory) of the file to
be opened or an integer file descriptor of the file to be
wrapped. (If a file descriptor is given, it is closed when the
returned I/O object is closed, unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file
is opened. It defaults to 'r' which means open for reading in text
mode.  Other common values are 'w' for writing (truncating the file if
it already exists), 'x' for creating and writing to a new file, and
'a' for appending (which on some Unix systems, means that all writes
append to the end of the file regardless of the current seek position).
In text mode, if encoding is not specified the encoding used is platform
dependent: locale.getpreferredencoding(False) is called to get the
current locale encoding. (For reading and writing raw bytes use binary
mode and leave encoding unspecified.) The available modes are:

========= ===============================================================
Character Meaning
--------- ---------------------------------------------------------------
'r'       open for reading (default)
'w'       open for writing, truncating the file first
'x'       create a new file and open it for writing
'a'       open for writing, appending to the end of the file if it exists
'b'       binary mode
't'       text mode (default)
'+'       open a disk file for updating (reading and writing)
'U'       universal newline mode (deprecated)
========= ===============================================================

The default mode is 'rt' (open for reading text). For binary random
access, the mode 'w+b' opens and truncates the file to 0 bytes, while
'r+b' opens the file without truncation. The 'x' mode implies 'w' and
raises an `FileExistsError` if the file already exists.

Python distinguishes between files opened in binary and text modes,
even when the underlying operating system doesn't. Files opened in
binary mode (appending 'b' to the mode argument) return contents as
bytes objects without any decoding. In text mode (the default, or when
't' is appended to the mode argument), the contents of the file are
returned as strings, the bytes having been first decoded using a
platform-dependent encoding or using the specified encoding if given.

'U' mode is deprecated and will raise an exception in future versions
of Python.  It has no effect in Python 3.  Use newline to control
universal newlines mode.

buffering is an optional integer used to set the buffering policy.
Pass 0 to switch buffering off (only allowed in binary mode), 1 to select
line buffering (only usable in text mode), and an integer > 1 to indicate
the size of a fixed-size chunk buffer.  When no buffering argument is
given, the default buffering policy works as follows:

* Binary files are buffered in fixed-size chunks; the size of the buffer
  is chosen using a heuristic trying to determine the underlying device's
  "block size" and falling back on `io.DEFAULT_BUFFER_SIZE`.
  On many systems, the buffer will typically be 4096 or 8192 bytes long.

* "Interactive" text files (files for which isatty() returns True)
  use line buffering.  Other text files use the policy described above
  for binary files.

encoding is the name of the encoding used to decode or encode the
file. This should only be used in text mode. The default encoding is
platform dependent, but any encoding supported by Python can be
passed.  See the codecs module for the list of supported encodings.

errors is an optional string that specifies how encoding errors are to
be handled---this argument should not be used in binary mode. Pass
'strict' to raise a ValueError exception if there is an encoding error
(the default of None has the same effect), or pass 'ignore' to ignore
errors. (Note that ignoring encoding errors can lead to data loss.)
See the documentation for codecs.register or run 'help(codecs.Codec)'
for a list of the permitted encoding error strings.

newline controls how universal newlines works (it only applies to text
mode). It can be None, '', '\n', '\r', and '\r\n'.  It works as
follows:

* On input, if newline is None, universal newlines mode is
  enabled. Lines in the input can end in '\n', '\r', or '\r\n', and
  these are translated into '\n' before being returned to the
  caller. If it is '', universal newline mode is enabled, but line
  endings are returned to the caller untranslated. If it has any of
  the other legal values, input lines are only terminated by the given
  string, and the line ending is returned to the caller untranslated.

* On output, if newline is None, any '\n' characters written are
  translated to the system default line separator, os.linesep. If
  newline is '' or '\n', no translation takes place. If newline is any
  of the other legal values, any '\n' characters written are translated
  to the given string.

If closefd is False, the underlying file descriptor will be kept open
when the file is closed. This does not work when a file name is given
and must be True in that case.

A custom opener can be used by passing a callable as *opener*. The
underlying file descriptor for the file object is then obtained by
calling *opener* with (*file*, *flags*). *opener* must return an open
file descriptor (passing os.open as *opener* results in functionality
similar to passing None).

open() returns a file object whose type depends on the mode, and
through which the standard file operations such as reading and writing
are performed. When open() is used to open a file in a text mode ('w',
'r', 'wt', 'rt', etc.), it returns a TextIOWrapper. When used to open
a file in a binary mode, the returned class varies: in read binary
mode, it returns a BufferedReader; in write binary and append binary
modes, it returns a BufferedWriter, and in read/write mode, it returns
a BufferedRandom.

It is also possible to use a string or bytearray as a file for both
reading and writing. For strings StringIO can be used like a file
opened in a text mode, and for bytes a BytesIO can be used like a file
opened in a binary mode.
Type:      builtin_function_or_method
In [9]:
# Use shift + tab
from sklearn.linear_model import LogisticRegression 
LogisticRegression()
Out[9]:
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='warn',
          n_jobs=None, penalty='l2', random_state=None, solver='warn',
          tol=0.0001, verbose=0, warm_start=False)
In [15]:
%quickref
IPython -- An enhanced Interactive Python - Quick Reference Card
================================================================

obj?, obj??      : Get help, or more help for object (also works as
                   ?obj, ??obj).
?foo.*abc*       : List names in 'foo' containing 'abc' in them.
%magic           : Information about IPython's 'magic' % functions.

Magic functions are prefixed by % or %%, and typically take their arguments
without parentheses, quotes or even commas for convenience.  Line magics take a
single % and cell magics are prefixed with two %%.

Example magic function calls:

%alias d ls -F   : 'd' is now an alias for 'ls -F'
alias d ls -F    : Works if 'alias' not a python name
alist = %alias   : Get list of aliases to 'alist'
cd /usr/share    : Obvious. cd -<tab> to choose from visited dirs.
%cd??            : See help AND source for magic %cd
%timeit x=10     : time the 'x=10' statement with high precision.
%%timeit x=2**100
x**100           : time 'x**100' with a setup of 'x=2**100'; setup code is not
                   counted.  This is an example of a cell magic.

System commands:

!cp a.txt b/     : System command escape, calls os.system()
cp a.txt b/      : after %rehashx, most system commands work without !
cp ${f}.txt $bar : Variable expansion in magics and system commands
files = !ls /usr : Capture system command output
files.s, files.l, files.n: "a b c", ['a','b','c'], 'a\nb\nc'

History:

_i, _ii, _iii    : Previous, next previous, next next previous input
_i4, _ih[2:5]    : Input history line 4, lines 2-4
exec _i81        : Execute input history line #81 again
%rep 81          : Edit input history line #81
_, __, ___       : previous, next previous, next next previous output
_dh              : Directory history
_oh              : Output history
%hist            : Command history of current session.
%hist -g foo     : Search command history of (almost) all sessions for 'foo'.
%hist -g         : Command history of (almost) all sessions.
%hist 1/2-8      : Command history containing lines 2-8 of session 1.
%hist 1/ ~2/     : Command history of session 1 and 2 sessions before current.
%hist ~8/1-~6/5  : Command history from line 1 of 8 sessions ago to
                   line 5 of 6 sessions ago.
%edit 0/         : Open editor to execute code with history of current session.

Autocall:

f 1,2            : f(1,2)  # Off by default, enable with %autocall magic.
/f 1,2           : f(1,2) (forced autoparen)
,f 1 2           : f("1","2")
;f 1 2           : f("1 2")

Remember: TAB completion works in many contexts, not just file names
or python names.

The following magic functions are currently available:

%alias:
    Define an alias for a system command.
%alias_magic:
    ::
%autoawait:
    
%autocall:
    Make functions callable without having to type parentheses.
%automagic:
    Make magic functions callable without having to type the initial %.
%autosave:
    Set the autosave interval in the notebook (in seconds).
%bookmark:
    Manage IPython's bookmark system.
%cat:
    Alias for `!cat`
%cd:
    Change the current working directory.
%clear:
    Clear the terminal.
%colors:
    Switch color scheme for prompts, info system and exception handlers.
%config:
    configure IPython
%connect_info:
    Print information for connecting other clients to this kernel
%cp:
    Alias for `!cp`
%debug:
    ::
%dhist:
    Print your history of visited directories.
%dirs:
    Return the current directory stack.
%doctest_mode:
    Toggle doctest mode on and off.
%ed:
    Alias for `%edit`.
%edit:
    Bring up an editor and execute the resulting code.
%env:
    Get, set, or list environment variables.
%gui:
    Enable or disable IPython GUI event loop integration.
%hist:
    Alias for `%history`.
%history:
    ::
%killbgscripts:
    Kill all BG processes started by %%script and its family.
%ldir:
    Alias for `!ls -F -G -l %l | grep /$`
%less:
    Show a file through the pager.
%lf:
    Alias for `!ls -F -l -G %l | grep ^-`
%lk:
    Alias for `!ls -F -l -G %l | grep ^l`
%ll:
    Alias for `!ls -F -l -G`
%load:
    Load code into the current frontend.
%load_ext:
    Load an IPython extension by its module name.
%loadpy:
    Alias of `%load`
%logoff:
    Temporarily stop logging.
%logon:
    Restart logging.
%logstart:
    Start logging anywhere in a session.
%logstate:
    Print the status of the logging system.
%logstop:
    Fully stop logging and close log file.
%ls:
    Alias for `!ls -F -G`
%lsmagic:
    List currently available magic functions.
%lx:
    Alias for `!ls -F -l -G %l | grep ^-..x`
%macro:
    Define a macro for future re-execution. It accepts ranges of history,
%magic:
    Print information about the magic function system.
%man:
    Find the man page for the given command and display in pager.
%matplotlib:
    ::
%mkdir:
    Alias for `!mkdir`
%more:
    Show a file through the pager.
%mv:
    Alias for `!mv`
%notebook:
    ::
%page:
    Pretty print the object and display it through a pager.
%pastebin:
    Upload code to dpaste's paste bin, returning the URL.
%pdb:
    Control the automatic calling of the pdb interactive debugger.
%pdef:
    Print the call signature for any callable object.
%pdoc:
    Print the docstring for an object.
%pfile:
    Print (or run through pager) the file where an object is defined.
%pinfo:
    Provide detailed information about an object.
%pinfo2:
    Provide extra detailed information about an object.
%pip:
    
%popd:
    Change to directory popped off the top of the stack.
%pprint:
    Toggle pretty printing on/off.
%precision:
    Set floating point precision for pretty printing.
%prun:
    Run a statement through the python code profiler.
%psearch:
    Search for object in namespaces by wildcard.
%psource:
    Print (or run through pager) the source code for an object.
%pushd:
    Place the current dir on stack and change directory.
%pwd:
    Return the current working directory path.
%pycat:
    Show a syntax-highlighted file through a pager.
%pylab:
    ::
%qtconsole:
    Open a qtconsole connected to this kernel.
%quickref:
    Show a quick reference sheet 
%recall:
    Repeat a command, or get command to input line for editing.
%rehashx:
    Update the alias table with all executable files in $PATH.
%reload_ext:
    Reload an IPython extension by its module name.
%rep:
    Alias for `%recall`.
%rerun:
    Re-run previous input
%reset:
    Resets the namespace by removing all names defined by the user, if
%reset_selective:
    Resets the namespace by removing names defined by the user.
%rm:
    Alias for `!rm`
%rmdir:
    Alias for `!rmdir`
%run:
    Run the named file inside IPython as a program.
%save:
    Save a set of lines or a macro to a given filename.
%sc:
    Shell capture - run shell command and capture output (DEPRECATED use !).
%set_env:
    Set environment variables.  Assumptions are that either "val" is a
%store:
    Lightweight persistence for python variables.
%sx:
    Shell execute - run shell command and capture output (!! is short-hand).
%system:
    Shell execute - run shell command and capture output (!! is short-hand).
%tb:
    Print the last traceback with the currently active exception mode.
%time:
    Time execution of a Python statement or expression.
%timeit:
    Time execution of a Python statement or expression
%unalias:
    Remove an alias
%unload_ext:
    Unload an IPython extension by its module name.
%who:
    Print all interactive variables, with some minimal formatting.
%who_ls:
    Return a sorted list of all interactive variables.
%whos:
    Like %who, but gives some extra information about each variable.
%xdel:
    Delete a variable, trying to clear it from anywhere that
%xmode:
    Switch modes for the exception handlers.
%%!:
    Shell execute - run shell command and capture output (!! is short-hand).
%%HTML:
    Alias for `%%html`.
%%SVG:
    Alias for `%%svg`.
%%bash:
    %%bash script magic
%%capture:
    ::
%%debug:
    ::
%%file:
    Alias for `%%writefile`.
%%html:
    ::
%%javascript:
    Run the cell block of Javascript code
%%js:
    Run the cell block of Javascript code
%%latex:
    Render the cell as a block of latex
%%markdown:
    Render the cell as Markdown text block
%%perl:
    %%perl script magic
%%prun:
    Run a statement through the python code profiler.
%%pypy:
    %%pypy script magic
%%python:
    %%python script magic
%%python2:
    %%python2 script magic
%%python3:
    %%python3 script magic
%%ruby:
    %%ruby script magic
%%script:
    ::
%%sh:
    %%sh script magic
%%svg:
    Render the cell as an SVG literal
%%sx:
    Shell execute - run shell command and capture output (!! is short-hand).
%%system:
    Shell execute - run shell command and capture output (!! is short-hand).
%%time:
    Time execution of a Python statement or expression.
%%timeit:
    Time execution of a Python statement or expression
%%writefile:
    ::
In [16]:
print(55)
5
55
Out[16]:
5
In [17]:
_i
Out[17]:
'print(55)\n5'
In [18]:
_
Out[18]:
'print(55)\n5'
In [19]:
___
Out[19]:
5

Markdown cells

  • Можете да документирате изчислителния процес използвайки богат текст и визуализации, чрез Markdown syntax.
  • Markdown cheat sheet: https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
  • Клетките позволява произволен HTML код за форматиране.
  • Клетки, които изпълняват код не могат да съдържат MD.

Markdown cells - Latex

  • В рамките на клетките за маркиране можете също така да включите математиката по ясен начин, като използвате стандартна нотация LaTeX. За целта се използва $, като може да има вложени (inline) $ latex $ и блокови изрази $$ latex $$.
  • Вложен: $y = \sum_{i=1}^{m}\Big(a_i * x_i \Big)$
  • Блок: $$ \theta_j := \theta_j - \frac{\alpha}{m}\sum_{i=1}^{m}\Big(h_\theta(x^{(i)}) - y^{(i)}\Big)x^{(i)}_j $$

Raw cells

  • Raw клетките осигуряват място, в което можете директно да записвате изход.
  • Суровите клетки не се изпълняват, но могат да бъдат обработени от nbconverted в последствие.

Основен работен процес

  • Нормалният работен поток в тетрадка е доста подобен на стандартната IPython сесия, с разликата, че можете да редактирате клетките на място няколко пъти, докато постигнете желаните резултати, вместо да трябва да повторите отделни скриптове с %run magic команда.

  • Обикновено ще работите върху изчислителен проблем на парчета, организирате свързани идеи в клетките и се движите напред, когато предните части работят правилно. Това е много по-удобно за интерактивно проучване, отколкото разбиване на изчисление в скриптове, които трябва да бъдат изпълнени заедно, както е било необходимо преди това, особено ако части от тях отнемат много време за изпълнение.

  • За да прекъснете изчисление, което отнема прекалено дълго, използвайте опцията за менюто "Kernel", "Interrupt" или клавишната комбинация i, i. Аналогично, за да рестартирате целия изчислителен процес, използвайте опцията на менюто Kernel, Restart или 0,0 shortcut.

  • Бележникът може да бъде изтеглен като .ipynb файл или да бъде преобразуван в редица други формати, като се използва опцията от менюто Файл, Изтегли като.

In [20]:
# Demo interrupt kernel
from time import sleep
sleep(10)
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
<ipython-input-20-6fa69c7c0033> in <module>
      1 # Demo interrupt kernel
      2 from time import sleep
----> 3 sleep(10)

KeyboardInterrupt: 

Комбинация от клавиши

  • Всички действия в ноутбука могат да се извършват с мишката, но клавишни комбинации също са достъпни за най-често срещаните. Основните бързи клавиши за запомняне са следните:

  • Shift-Enter: стартирайте клетката и преминете на следваща клетка. Създава нова клетка ако има нужда.

  • Esc: Режим на управление

  • В режим на упрваление със стрелките можете да скачате по клетките
  • Enter: Режим на редакция на клетка
  • Ctrl + m + m: Смяна на типа на клетката на Markdown
  • Ctrl + m + a: Добавяне на нова клета отгоре (above)
  • Ctrl + m + b: Добавяне на нова клета отдолу (below)
  • d d: Изтрива текущата клетка (в режим на управление)
  • Ctrl + Shift + C или Cmd + Shift + C: Command menu
  • Да редактирате комбинация: Menu Settings -> Advanced Settings Editor (Cmd + ,)

Rich Output

  • В Python обектите могат да декларират текстовото си представяне чрез метода repr. IPython разширява тази идея и позволява на обектите да декларират други, богати представяния, включително:
  • HTML
  • JSON
  • PNG
  • JPEG
  • SVG
  • LaTeX

  • Обект може да декларира някои или всички от тези представяния; всички се управляват от дисплейната система на IPython.

Basic display imports

Функцията display е инструмент с общо предназначение за показване на различни изображения на обекти. Мислете за това като print за богати изображения.

In [21]:
from IPython.display import display

Ивзвикване display на обект ще изпрати всички възможни представяния в notebook-a.

  • Тези представяния се съхраняват в документа на Notebook.
  • Като цяло Notebook ще използва най-богатото налично представяне.
  • Ако искате да покажете конкретно представяне, има специфични функции за това:
 from IPython.display import (
    display_pretty, display_html, display_jpeg,
    display_png, display_json, display_latex, display_svg
)

Images

To work with images (JPEG, PNG) use the Image class.

In [22]:
from IPython.display import Image

i = Image(filename='data/jupyter-tutorial/ipy_logo.png')
i
Out[22]:
In [23]:
display(i)
None
In [24]:
dir(i)
Out[24]:
['_ACCEPTABLE_EMBEDDINGS',
 '_FMT_GIF',
 '_FMT_JPEG',
 '_FMT_PNG',
 '_MIMETYPES',
 '__class__',
 '__delattr__',
 '__dict__',
 '__dir__',
 '__doc__',
 '__eq__',
 '__format__',
 '__ge__',
 '__getattribute__',
 '__gt__',
 '__hash__',
 '__init__',
 '__init_subclass__',
 '__le__',
 '__lt__',
 '__module__',
 '__ne__',
 '__new__',
 '__reduce__',
 '__reduce_ex__',
 '__repr__',
 '__setattr__',
 '__sizeof__',
 '__str__',
 '__subclasshook__',
 '__weakref__',
 '_check_data',
 '_data_and_metadata',
 '_find_ext',
 '_mimetype',
 '_read_flags',
 '_repr_html_',
 '_repr_jpeg_',
 '_repr_mimebundle_',
 '_repr_png_',
 '_retina_shape',
 '_show_mem_addr',
 'data',
 'embed',
 'filename',
 'format',
 'height',
 'metadata',
 'reload',
 'retina',
 'unconfined',
 'url',
 'width']
In [25]:
print("HTML:", i._repr_html_())
print("PNG:", i._repr_png_())
HTML: None
PNG: iVBORw0KGgoAAAANSUhEUgAAAggAAABDCAYAAAD5/P3lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAH3AAAB9wBYvxo6AAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7Z15uBxF1bjfugkJhCWBsCSAJGACNg4QCI3RT1lEAVE+UEBNOmwCDcjHT1wQgU+WD3dFxA1oCAikAZFFVlnCjizpsCUjHQjBIAkQlpCFJGS79fvjdGf69vTsc2fuza33eeaZmeqq6jM9vZw6dc4pBUwC+tE+fqW1fqmRDpRSHjCggS40sBxYDCxKvL8KzNBaL21EPoPB0DPIWVY/4NlE0ffzYfhgu+QxGHoy/YFjaK+CcB3QkIIAHAWs3wRZsuhUSs0CXgQeBm7UWi/spn0Z+jA5yxpEfYruqnwYllRic5a1MaWv8U5gaT4M19Sx396IAnZLfB/SLkEMhp5O/3YL0AvoAHaKXl8HLlZK3QZcpbWe0lbJDOsaHuDU0e4u4JAy2wPk/C1JzrKWArOQ0fUtwH35MOysQxaDwbCO0NFuAXoh6wPjgQeUUvcqpUa0WyCDoQlsCIwBjgfuAV7KWdY+7RWpmJxlXZezrEdylvXxdstiMKzrGAtCYxwI/EspdZbW+g/tFsbQ67kQuBHYFNgseh9FV6vCbUAeWBC9PgBeq2EfS6J2MQOBrRDTe5KdgAdzlvW1fBjeUUP/3UbOsoYBE6OvG7VTFoOhL9Af+BUwFLkZpV+DaY6V4UPkRpb1+ncT+m8nGwK/V0oN01qf025hDL2XfBi+DLycLMtZVo6uCsKfGnSq8/NheEpqHwOBEcDBwJnAsGhTP2ByzrJG5cPwnQb22Sy+0G4BDIa+RH+t9dmlNiqlFKIkJJWGi+jq5JPmq8BbJJQArfXqpkncczlbKbVQa/3rdgtiMNRCPgxXAK8Ar+Qs63LgXmDvaPPGwPeAH7VJvCRfbLcABkNfouwUg9ZaAwuj178BlFLvVejzgR4WFviM1npcuQpKqf6IyXIjxLS7GzAWuUnuXsO+fqWUellr3ZBJdq/jr9+BDn1uve07O9Rz0y6f8PtGZGgWe53oT6SBkZ/q1/nHZy47aloTRTKUIR+Gy3OWNR6Zxtg0Kv4KRkEwGPocxgcBiCwcsSI0F5iOhF+ilPok8C3gVGS+thK/VErdrbWuO2yss/+aLZTuOKbe9krrIUCPUBB0B+PQ1P1bdKe6EzAKQgvJh+GbOct6gkJkxM45y+qXDIWMHBhjBWJePgyDWvaRs6zPIVObAG/nw/DpEvUGAp8E9gGGJzbtl7Os7cvs4skqp0V0Yl8jgcOBjyMDhbmIZeWlfBg+UUVfReQsayhwELAnsAXi6/E28BxwTz4MP6iyn92RaSCA+/NhuCwqXx9R4MYhU0MfRTK/AjyWD8MFGd0ZDFVhFIQKaK3/BXxfKXUlklTq0xWafAI4Driyu2UzGLqRlygoCArYHJif2H4gcFb0+Z2cZW2bD8NV1XScs6yNgH8g/jsAPwCeTmzfFPgjYsnbiez71MUVdnMQcF8V4nyUs6whwB8QX4+0s2Ys0yPAt/NhGFbRZ/wbzgO+DaxXotqqnGX9GbigCkXhf5CBCsDngYdzljURGQhsWqLN+znL+iFwdT4MdYk6BkNJTJhjlWitQ2Bf4P4qqv848t8wGHor6Yd9+ruHJFkC2BI4rIa+D6egHKwmstYlGAxMQCwHrRjEPI5ER5S7ZvcFXsxZ1phKneUsawSi8HyH0soB0bbvAM9Ebaplt5xlnYkct1LKAYiFZhJwSQ19GwxrMRaEGtBar1RKfRX4JxIzXortou3PN1mE+YgJsSwaeoLHOQCqUy3QSr9eqZ6G/gq2aYVMhqrYOfF5FeJwvJZ8GM7JWdY/gC9HRS7wtyr7Pjrx+e6MqYC3KLbU7Qhck/h+FJIKvRRVjfSREXicU8EHpgAvIIqLBZwGfC7avl5Uf29KkLOsTZCMq8npj9sQx89no37HIlaAODplNPBIzrJ2z4dhNVlaT0HCXwFmIkrAC4if2PaIz8/3KCgn385Z1pX5MJxeRd8Gw1qMglAjWutlSqnTgUcqVP0SzVYQtP5mcMXESvvtUUy9YsK5QEWHy7EnTB6lOtSsFohkqEDOsgYAdqJoagkT9Z8pKAj75yzr4/kwnF2h748ho/GYq9J1oqiKLj4JOctKK8Yz8mH4Yrl9VcnHkXVYTsyHoZ8WJWdZNyPThbF5/3M5yzowH4alpi9+T0E5WA18Nx+Gf0zVeRG4KmdZ90R9bwCMRKwyX69C5h2j91uA4/JhuCSxbTYwJWdZtwNPIFbifsAFSISZwVA1ZoqhDrTWjyIjjXIc3ApZDIZu4ELgY4nvt5Wody8wJ/qsgBOr6HsihfvOfCRrY7v5dYZyAECkGP0ISEZmZYZ55yxrB8SyEXNxhnKQ7Pt64H8TRUfmLGuXKmWeC4xPKQfJvp9CLCJlZTYYymEUhPq5tcL2XVsihcHQJHKWtU3Osi5GnAZj5iKWgiKitRouTxQdl7OscnPu0HV64dp8GLY7R8pyxEGxJPkwfBcZ9ceUSvN8IoV76upK/UZcgawcG3NKqYopfleFU+gDic/b5SzLWIwNNWFOmPqp5CG9sVJqPa11VZ7dBkOL2D1nWcmcBkOR8MFtgM/QdTXJZcCR+TBcXqa/SYj5egAFZ8VMX4ScZe2FRPnEXF2z9M3n3nwYVsrtAmK6/0z0uVR4ZXLtivvzYfhGpU7zYbgkZ1k3ACdHRQdWIQsUO3ZmkUzB3Q/xjaolLbehj2MUhDrRWr+mlFpJ+eV5hyIxz4YWs98Fj/Rf8uZbozo0/ZYt7D8rf9ORK9stUw/hU9GrEnMAp1R+gph8GL4bzdNPiIpOorSzYtJ68FS1IYPdTLWp3hcnPm+Q3pizrA7E+TCmFn+aZN0dcpY1LB+G5e4by6rM8bA49X39GmQyGMwUQ4NUGnkMrbDd0A3sdeLk4z6cN+89pTtDTWd+gyErF+7pTv5eu+XqJbyKTDHsmg/DJ6tsc2ni8+dzljUqXSGaevhmoqjIObFNVBzlV8kQug4W5tbQNl13WGatAv+poW+DoW6MBaExPgC2LrO9nHWhpSilDqI4NPMhrfXUJvS9M/DfqeJXtdY3N9p3rex50uQ9lFKT6BrTvoFCXbTXyZNfmnrZxHtbLVMP4xng74nvK5DzeD7wfIWRayb5MHwiZ1kzgF0oOCuemar2ZQoK8zLgr7Xup5t4s0n9DEl9b0RBSPeV5q0a+jYY6sYoCI1RacnZ91siRXUMAH6eKnsYicdulDOAY1NlpzWh35pRqG9RIuGN7uw4AfG878s8nw/DX3RDv5dScGY8NmdZP86HYXJaJzm9cHMp7/s2UHdK9BTpKaxBNbRN163kt9Rux05DH8FMMTTGZhW2v9sSKarjbopNk/sqpUY30qlSahCSGS/JCuD6RvqtF6UpMm/HaHTJbYaGmQzED/0umRVzlrUZhXwJ0HOmF5pJOlXyxzJrZbNt6rtZP8HQIzAKQp0opTZAlsItxTKtdTnv75YSLR7lpYqrjV0vx2EUH4fbtdZtucnpMqOrDjPy6jYii8DkRFHSYnAEhem22cBjrZKrVeTDcCldTf/ph345ksrEGprnF2EwNIRREOrnMxW2z2uJFLVxJcXmy2OVUo34ShydUda+EaIq7T2u0SZTY/eSdFY8MGdZm0efk86J6/LCQUnFp5pIkZjkcvQz8mH4YZPkMRgawigI9VNp7v7BlkhRA1rr+RQneNqC2hbaWYtSajiS9z3JXLomaGktq/VllLIUdKqSWe0MjZMPwxlIel8Q/6Zv5CxrGIX8AJ10XU+hFtIRQ+UWKWoXyYyTu+Qsa79KDXKWNRpJyx5zZ9OlMhjqxCgIdaCU6g98o0K1npBCNotLM8rcOvuagCRgSXKN1rozq3IrCCZNfFkrfRjotWsCaJinUBODK51/tkuuPkTy/DoYOIDCfeb+fBjW4t2/lqhdcmRdbUriVnILXS2HZ1WRvfAcCk61K4A/dYdgBkM9GAWhPr5F6XSrIBf6Qy2SpSaidSReShV/XilV7veUIj29oOkB2fGmXT7x7sCbOGpFf7VZx4A1m0/znG2nehMyc+0bms7NFJxzxwH7J7Y1OvWUPG9/mLOsLRvsr6lEaaOT0TtfBB5ITLWsJWdZg3KWdRNwTKL4wnwYzu9mMQ2GqjFhjjWilBqBpJYtx51a66UV6rSTS+maJz52VvxRdvVilFK7UbzexGNa67Kr+bWS6X+ekPYs79HkLGt34JOI+Xyz6D2d1vfMnGUdini6L0C851/Oh2HD+SyaQT4MV+YsaxJyLm1Gwf9gAXBHg93/JNHHtsArOcuajCztPBDYCkkytBXg5sOw5QmF8mF4W86yLgK+HxXtC8zKWVaALMm8CslHsicS7RFzL8VhyAZDWzEKQg0opbYE7qd8prPVdF2hrSdyLfALYMNE2XFKqR/XsHbEURll62L4Wiv5PuBUqPPF6JXkLuCQbpGoPi4HfohYKGMHWD9axrlu8mF4Z7RuwfioaDBwaonqRemQW0U+DH+Qs6xFwHnIFNwQsv+3mMnA8dHiVwZDj8FMMVSJUuow4DkKa7GX4gqt9cstEKlutNaL6boULMho5tBq2iul+lH8IFuCmJcNfZx8GM6hOCFVU5THfBhOQHxfylkH3gY+asb+6iUfhhcCewC3l5BlFbJk/P75MDwqlVTKYOgRKK1rizhSSk2h67ximo1abV5XSi2n9EIkz2itx5XYVqnfQcjI7DiqW2XtfeCTUbRA3ex50nWfUrqjeJEcrfcLrpj4SCN9xyilxgDPp4of0FofUEXbg4B/pIqv1FrXnVNh7AmTR3V0qIwwRH1E4E28pd5+De0hZ1m/Bb4bfX0+H4Z7dMM+hgGjkDwCS5FpjFk9bR4/Z1mDkGmF4VHR20g4Y3oxJYOhR9EXphg6lFLlVjFbH0mZvDGwCTAayCFe0ntTOZ1yzDLgkEaVg1ahtX5BKfUU8OlE8ReUUjtorSstCduzch8YehSR5/6ERFG3nBvRuhE9frXUfBguA6pd+Mpg6DH0BQXBBro7o+Ea4Bta66e6eT/N5lK6KggKOAE4u1QDpdTGFOdNmNkLf7uh+zgYcRQEMa+3Je22wWBoDOOD0DhLgYla67vaLUgd3ETxglLHRXkeSnEExQ5gbQ9tNPQokis5TsqHoVlbwGDohRgFoTECYHet9Y3tFqQetNYrKDb/DqN46eYk6emF1UhUhMFAzrImUEhDvgr4VRvFMRgMDWAUhPpYAvwf8Bmte31+/8uQBEdJMjMrKqW2o5A2N+YfWusePw9s6F5yltWRs6zxwKRE8RXtyEVgMBiaQ1/wQWgmeWTe/jqtdU9Zz74htNavKaXuAw5KFB+glBqptZ6Tqj6RQlrYGDO90AfJWdY5wNeQFQwHIAmetk5UeZFCsiCDwdALMQpCed5AphEC4NF12BHvUroqCAoJ7TwvVS+d++BdJEmPoe+xKRLnn0UeODwfhm3NRWAwGBqjLygIbwN/LbNdI1MGH6ReL/eWkMUmcDeSeGa7RNlRSqnzdZQoQym1C7Bzqt11NWReNKxbzEMU6GHAesBiYCaSLOviaF0Cg8HQi+kLCsLrWuvT2y1ET0ZrvUYp5SG57mO2Bz4LPB59/2ZRQ5P7oM+SD8OLgYvbLYfBYOg+jJOiIeZKxOs8STJiIb28daC1/lf3imQwGAyGdmEUBAMA0XTKraniI5VSA6O0zOnloI31wGAwGNZhjIJgSHJp6vtgJBNlehW65cANLZHIYDAYDG3BKAiGtWitHwVeShV/muLFuW7VWi9qjVQGg8FgaAd9wUnRUBuXAn9IfN8f+FyqTo/OfbDnSX8brDpXnqEUe2ropzQvdtDx66evGN9XolIMPQDb9T8LrBd4zsPtlsXQe7Bd/0BgQeA5QbtlMQqCIc21wC+ADaPv6WWu5wAPtVKgWtjt6Os2XG/9jhdQjIzTQ2rFF9bQecy4E2/I9UQlwXb9LYDDK1R7K/Cc21shj6FxbNcfDjwGKNv1Rwae83q7ZWo2tusPBb6ELGW9BbAICX99Gngs8Jx0hlZDBWzXHwvcC6ywXX9o4DlL2ymPURAMXdBaL1ZK+ZRItwz8Jc6N0BMZMFB9GxiZsWnzTjrPAH7QWomqYgTF/h9pngC6RUGwXf+XwC2B50ztjv57M7brXwJMCjxneo1NP0SWgAfJq7LOYLv+esAFwOkUL9wWM912/d0Dz+lsnWQ9A9v1BwEXAT8PPKfWVOMLkPVt3kNWQm0rxgfBkEWph5UG/tJCOWqnQ40ttUkrvWcrRamWwHOmAZsguSfGAi9Hmy5AUhgPAz7fHfu2XX8k8ENgx+7ovzdju/4uwP9D/peaCDxnCbANsF3gOYubLVu7sF1/AHAHcBaiHDwI/C+ywNsE4KfA68BdfVE5iNgbOBmxqtRE4Dn/BoYDnwg8Z02zBasVY0EwFKG1fkEp9RTioJjkIa11zzaVarYqvVFt2TpBaiN6oCwB5tiu/2FUPCvwnLTTaLM5oJv77800dGwCz1kXHXkvRNKydwI/Cjzn1+kKtuufi2TX7Ks0et681yxBGsUoCIZSBBQrCL0h98EbdW7rddiuPwoYFJu/bdffFNgL2BZ4DZgWKR5ZbRWS2+KIqGiE7fpjUtXmlrtZRdaHscBAYDowM/CckimWbdffFfgw8JzXou/9kfUccojV5MXAcz4s0XYwsCsymu8PzAVmBJ7zVqn9pdoPRVKF7wSsAN4EgqzRve36HcAoZDEqgO0zjs3rged8kGo3gOJ05ADTs0bTkan+k9HXGaVGjNFxykVf81nH2Hb9Ich/MRJJeT291H9fL7brj6CwANfPspQDgOi3rijRx/rIb8kB7wPPBZ4zL6Ne/JvfCDzn/WhufhvgvsBzVkR1dgN2AR4JPGduom38P7wXeM7c6FzfCfgU4iMRlFLebNfPIefXzMBzikz8tusPQyx676bljmTeCfhyVLST7frp//TV9Dluu/6GwOhUvTWB58zIkjFqsykyNfmfwHMW2K7fLzoWeyDTFPnAc14t1T7qYwNgT+Rc/wi5ZyT/N20UBEMRSqn+wNdTxQspTqTU41BaP6yVOipzGzzSYnG6m6uBz0YPv7OQm3dytc35tuuflHZutF3/BuArwEaJ4p/QNdU2wGnAH9M7jRSTG5CbS5LQdv2joymTLKYBzwHjbNc/DomW2TCxfbXt+sMCz3k/sa8RwM+Qh/X6qf5W2q4/CTitzMN1OPB7CopQktW2658YeM5fEvXvRKZzBiXqZaWUPha4JlW2NfB8Rt0hiANfmjWIuf5jiLPfvVm/AfmvbgNmB54zKrkheuD+Bjg11Wap7fpnBJ5TybelFk4E+iE+Fb+ptbHt+scg//nGqfJbgeMDz1mYKN4UOZYX2q7fSWHhuNdt198ZOBc4MypbbLv+5wPPeTb6PiJqe5ft+ichx3WXRN8rbdc/OfCcrGisR4ChiHKSlSn2f4BzkOvitMRvCKJ9DEzU9TPafwGZlkkyBvExSrKUrtdnmoOBycA5tus/iCyat3liu7Zd/0rk2ihS1mzXPwT4E3LulaLTKAiGLL6EaMlJbtBat91pphIjFw289t9DVh4N7Jva9EKnWnpJG0RqBXcjCa08YCqy/PJE4L8A33b9HQPPeTNR/0bgvujzGchoywPSq5U+nd6R7fp7IDfRjYDrEE99DeyHrPb5lO364xI36zTb2q4/AUnt/SSyLHQHMvJZklQOIhYChyCLid2FWBoGIQrDfwGnAP8GskzdVvSbBgPvIMdpJjLHuxdikXgg1ewa4Jbo84+BHRAFI/3gT9/QQZa+/iIy9zwccVQrSeA5nbbrX4s8cI6htIIQK7xdFJLIAvEEYjmYBlyP/E4LeXj92Xb94YHnnFtOjhrYJ3q/vtbpE9v1fwqcjYxUL0GO51bI//g1YIzt+mNTSgJIivfNEIXgBOThfx0ySv8Nct7vgzgfj0+1HQf8E5iPKM/vI+vLHA9cZbs+JZSEevgDBZ++3yIKzgVI1FeSrCnD6ci0zebAJxCfjmoZjxzXPPBL5By0gW8jCt3sqHwtkYL1N0RB/R2ymOG2yHE5CLFAHAu8ahQEQxbfyijrDdML3HTTkWvUBRfsb88bPb6TzjEK+oHKL184YHL+Jmdlu+XrJsYBhwaec0dcYLu+hzw0dkcu/AvjbUmLgu36DqIgPB54zuQq9nURMgI8LjnyBibZrj8z2s/ltuvvVcJJbWvkXDoi8JzbKu0s8JxFtut/IqXgAPzOdv0/IiPnb5KhICAjpMGIEjAhPV1iu35HWsbAc25ObD8ZURAeqibENBqpTYnark8FBSHiakRBOMx2/cHpB29kSv4KooSlLRYnIcrBHcBXk7/Fdv0bgReAM23Xvz7wnJlVyFIJK3qfXUsj2/U/jiiiq4B9ktEytuv/Fhlpfx2xEnw31XxHYLfAc6bbrv8kcny/Bnwz8Jy/2q6/DTLd9F8Zu94ceXAeEHhOvM7MNbbrT0UU4vNs15+c2FY3gedcm/hNP0EUhDvLKMrJtkuIFPboWNWiIOSAO4HDE7/Dj67FSxEn21+m2pyOWDpuCDxn7fG2Xf8e4F1EIVsceE5oohgMXVBKjURuSEke11qXMhv3OPR553VO9Sb407yJZwTexO8FnnNV/qYj11XlAOCfSeUA1s4D/y36mp7frAvb9fdGLDMzU8pBzMXIg2wsMhLKQiFhgxWVg5gM5SDm+uh9VHqD7fr7IlaNFcAJWb4UPcHLPvCc2YgVZn3gyIwq30AsQg8lQ+aiefUfR1/PzlB08sD9Udusfmsi2t+Q6GutjspnIE6L16dDaSN/irMRp8dTbddPOxK/nwgxTZr8747e30SsEkNL7PvXGQrAVYgvwggK/gK9mXMyfuON0fvWkY9Dkp2i97uThYHnLKNgURsDxknRUMz5FJ8XP22DHIbqSc9pxsSOW8ObtJ89ovdXbNcvpQC8j4zcdiTbnAoy4q2b6Ia3CYV5/Y0zqsXOf4/WEYveaq5GQuOOQaZekhydqJNkW2BLZF2UzhL/R+xE2XAIa+A52nb9lUhoY63hd7GD5d1ZGwPPmW27/iuIUrkLXc/n9xP13rZd/yNgVezoF8n1NjAyyyKETGGl97fGdv1/IlaL3h7e+06WM2PgOQtt11+GTMcNo6vVJ1aWsyK+4nvFQjAKgiGBUmoshfnOmGe11vdl1Tf0GOaUKI9vlqrE9lqJb6b/Hb3KsU2Zba/VslPb9bdDfA0ORLz0N62iWWxVqMkc3iZuRuawP2u7/g6JKI9RSCTRYoodhOP/YgNKK2Ix2zZJzjnINMN2NbaL/4uiaIUE/0EUhB3pqiCkMwl2IscjXZZFJ/B2iW1xRtWRZWTqDcwps63U9f8Q0TSN7fp/iK0PtuvviPjmrCHyR1qrICilNkTmHjZDLsDke/JzOtwnzY1KqXcRR4cFiBab9XlRT87I19dQSo1GNPz0tJOxHvR8mhrOVobB0XuAOBiWo1zmwaqdXW3X3x+4BzGVv4SMpN9AnPEg21McxMIArTs2dRN4zoe26/8NOA6xGJwfbYqV9b8GnrM81Sz+Lz5A0qOXo2y4Ww3MoT4FIY4+KTfNF58TaXN4VthstVNDitLKcdxvOjKmEj0tv0M953fs87E3Eul0B2JliBflOzfwnFcA+iul5iEmwQFNEBaK569L0amUWggcqrXO8gg2FKHG2CdW4Uem9XvBlUflu7RUaiByU3lPa92ZKN8cSav8fUQBTHKr1rrqueIsxp18/eg1azrLjSYB6NfRsY3G6Is9nDjDYxh4zundvbMotvtm5N50duA5P09tT0faJIkfirU+zNrF1YiC4FBQECZE73/JqB//F+u14r+ImIVEOB1iu/6ZNfhwzEamp7YuU2e7RN1moZBnW5YVIfZ1qNWfotw51yuIph++hET0bAkcikwpTAEuCjxnSly3PzIP0a8NcnYgD6SBlSoaIhQXV2UtVup24LBU6S7IyG+NUuodZP52awojrTSvIjeshlij9XdQKh2jXYRRDtpGfOCruQfEpmzbdn0VdP9iPLsgjnEryI67Lzd/PCt6/5Tt+v3LJXAqQ/z7ut2ZO/Ccx23XfxUYZbt+7D8xCngl8Jwsa80sZBS8ke36O7cg4ybA5UgegJ0QE/XN5auvZRaiIMQRF12wXX8TCv9ls6eERpOtIMR+EXNS5YsRh8dSTo/V+CzUck21i6uR5++4wHNeKFXJRDH0PfoR5fqmtHKwDDhCa73O5JA3lCSeF04v6Z3FPRTMzBO7S6AE8Q12PbomgYn5Xpm29yMPhu2RUK96iKMn9q6zfa38JXo/NHoly7oQeM5K4Iro60+jKINuJVJCYu/439uuX805A4VkWyfbrp+V/MdFnOmeCmpfFKsSRYMc2/U/DeyG3OfSjpOx5WmfVHmcuXFcFfus5ZpqObbrb45EtswqpxyAcVI0FDMbOFxrXeT9a+heopvnEArzolvashT0wmbEapdgGpIU5XDb9R9FYqrXQyyL8wPPeTeuGHjOMtv1T0VuqldH6W//jigNmyHOcAcBgwPPcZog20xkRLcJ8DPb9S9CRqM7I7kDvoDE1hfdxwLPWWy7/plI7oCLbNffHXm4zUQeRtsjGRP/EXhOKSfcABkpj49i5+9G/putgHmB5yxIN4iSF21C14V6Rtiu/yYSW15uHv4a4P8oKAedlPcvOAv4KmItfCTKKfAS8v8NR1ILHwnsl5GAqF7ORdYaGA48HGWyfBqYgViDRwCfQR72PkDgOU9E2TvHI4m0TgeeRczb30DyH2iKcyA0ymrgWNv1FyDK1NvIQ3tStN3LCH+9HUl29UPb9echFo8BUbtLEKfJtJ9EmgA59ifbrj8bCR3cGDlvZqdTLcPa9NCbUMhs2GFLKvPFSAKxZl7/CxEL8pgoA+QMxD+kE3HenAHcHnjOGmNB6Dt8iGjHWSFKK4HHkcQrOxvloLXYrr+77fqrEIejNyiE6P0WccZbabv+lFLtG+Ry5AY/BHkYfRDtR9M79QAAA3FJREFUcwYSNdCFwHPuQR6a7wHfAR5GMhk+i9xcT6G6KIOKBJ6zFBn9r0GUmBlIWN9ziHf/5yjO/phsfy2yqt4ixOJxF3INTI9k/Q7ZoV4xv0PC5LZCci4sQm6g08kYHdquvxy5lt4DwsSmF5EENCts1//Idv3M9LbRegJTkEx4NvBA1joFifqLIjkeR6wcfwdeQfIFTEEcjHNU79RXkShvw95Ixs5+yOj/KuSh+ATiAHcqxb4fxwOXRfJMQc6zlxGF6B3g4MBznmmWnBFzEUfP0xDFcCGiAG+JHKushESXIdanjRBF4l3EInAj8vuOqWK/5yNRGaOQFNkfIhkOX6CQgwAA2/W3jkI3V0T7ejjatAFyXb2PXP/LbVnroWGi6bbzo697IlaWk5Br93wkk+jztusP7o94Lna7eaoMZU0cVXIAped7eqGZfP2ZqmPFl+ptrVf3n19UpvVMYLRSagBywxuEjLwWAe9qrTMXV2mUzs7OP/Xrp+6qt33Hmn5Zue3XNeZTOVoky5nqKiQkrNT883Qk3WvJsMLAc1bbrv9Z5AH6KWRkOB+5wRWlWo7a3Ga7/mOIomAho/GFyI30YeDREru7ELlOq07TG3jONbbrT0Nu9KOQm+i/gFsDz3nTdv2fI2FbpdpfHnlpH4LcnHdAlIz5yLErqXgFnvOR7fo28lDYE7lu3kKOTdZ9K52xrhTl7knnUVB6SqVeTsr4apQU6lDEbG4hCsFbROsRBE1ebjrwnNB2/XGIGf5gRBkYhPyv7yDpjR9MtVkOnGK7/vWIgrFrVPcF4O8ZKbaXIuduWkH6KfL/JbkEsWClfWK2CDzHt10/jzhXjkGOyzNIZEiRD00ga3ocaLv+kUh2xo8hSuVURKmIUyiXVGYCWVzKQlJD7xrJNg85b9LX8RLgF6X6SpFU9Cpe28gaJgORqEEAbNffDLlvHIQoAndR8NEYilwjExD/nwuUiTQ0GAwGw7qC7fqjEUvKqsBzmhWdt05gu/5pyNoifw48J9N5PForxQeeNFMMBoPBYDD0DWL/llvK1In9jt4zCoLBYDAYDH2DePo5MwrJdv0hFPwTnjBRDAaDwWAw9A3+hPgOHRPl25iK+FhsiuR4OARx0Lwf+J1REAwGg8Fg6AMEnvNklL78HMRRca/E5hVINNIVwI2B56z6/3ExLRI31pXNAAAAAElFTkSuQmCC

In [26]:
Image(url='http://python.org/images/python-logo.gif')
Out[26]:

Вградени срещу не вградени изображения

  • По подразбиране данните за изображението са вградени в документа на ноутбука, така че изображенията да могат да се разглеждат офлайн.
  • Също така е възможно да кажете на класа "Image" да съхранява само link на изображението.
from IPython.display import Image
img_url = 'the image url'

# by default Image data are embedded
Embed      = Image(img_url)

# if kwarg `url` is given, the embedding is assumed to be false
SoftLinked = Image(url=img_url)

# In each case, embed can be specified explicitly with the `embed` kwarg
# ForceEmbed = Image(url=img_url, embed=True)

HTML

  • Обектите на Python могат да декларират HTML представяния, които ще се показват в Notebook.
  • Ако имате HTML, който искате да покажете, просто използвайте класа "HTML".
In [27]:
from IPython.display import HTML

s = """<table>
<tr>
<th>Header 1</th>
<th>Header 2</th>
</tr>
<tr>
<td>row 1, cell 1</td>
<td>row 1, cell 2</td>
</tr>
<tr>
<td>row 2, cell 1</td>
<td>row 2, cell 2</td>
</tr>
</table>"""

h = HTML(s)
In [28]:
display(h)
Header 1 Header 2
row 1, cell 1 row 1, cell 2
row 2, cell 1 row 2, cell 2

Можете да го постингете и с %%HTML cell magic.

In [29]:
%%html
<table>
<tr>
<th>Header 1</th>
<th>Header 2</th>
</tr>
<tr>
<td>row 1, cell 1</td>
<td>row 1, cell 2</td>
</tr>
<tr>
<td>row 2, cell 1</td>
<td>row 2, cell 2</td>
</tr>
</table>
Header 1 Header 2
row 1, cell 1 row 1, cell 2
row 2, cell 1 row 2, cell 2

JavaScript

  • Jupyter позволява на обектите да декларират JavaScript представяне.
  • На пръв поглед това може да изглежда странно, тъй като JavaScript е програмен език.
  • Това обаче отваря вратата за богата продукция, която използва пълната сила на JavaScript и свързаните с нея библиотеки като [d3.js] (http://d3js.org) за изход.
In [30]:
from IPython.display import Javascript

js = Javascript('alert("hi")')
display(js)
In [31]:
%%javascript
alert("hi")
In [32]:
from IPython.display import Math
Math(r'F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} dx')
Out[32]:
$$F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} dx$$
In [33]:
from IPython.display import Latex
Latex(r"""\begin{eqnarray}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\
\nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} & = 0 
\end{eqnarray}""")
Out[33]:
\begin{eqnarray} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{eqnarray}
In [34]:
%%latex
\begin{align}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\
\nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} & = 0
\end{align}
\begin{align} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{align}

Audio

  • IPython улеснява взаимодействието със звуците.
  • Класът "Audio" ви позволява да създадете аудиоконтрол, който е вграден в Notebook.
  • Интерфейсът е аналогичен на интерфейса на клас "Image".
  • Могат да се използват всички аудиоформати, поддържани от браузъра.
In [35]:
from IPython.display import Audio
Audio(url="http://www.nch.com.au/acm/8k16bitpcm.wav")
Out[35]:
  • NumPy масив може да бъде автоматично превърнат в звук.
  • Класът "Аудио" нормализира и кодира данните и вгражда полученото аудио в Notebook.

  • Например, когато две синусоидални вълни с почти същата честота са насложени, се появяват явления, известни като бийтове. Това може да бъде аулизирано, както следва:

In [36]:
import numpy as np
max_time = 3
f1 = 220.0
f2 = 224.0
rate = 8000.0
L = 3
times = np.linspace(0,L,rate*L)
signal = np.sin(2*np.pi*f1*times) + np.sin(2*np.pi*f2*times)

Audio(data=signal, rate=rate)
/Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages/ipykernel_launcher.py:7: DeprecationWarning: object of type <class 'float'> cannot be safely interpreted as an integer.
  import sys
Out[36]:
In [37]:
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

sns.lineplot(x=times, y=signal);

Видео

  • Могат да се показват и екзотични обекти, докато тяхното представяне поддържа протокола за показване на IPython.
  • Например, видеоклиповете, хоствани външно в YouTube, се зареждат лесно:
In [38]:
from IPython.display import YouTubeVideo
YouTubeVideo('sjfsUzECqK0')
Out[38]:

Зареждане на анимация от локален диск

from IPython.display import HTML
from base64 import b64encode
video = open("animation.m4v", "rb").read()
video_encoded = b64encode(video).decode('ascii')
video_tag = '<video controls alt="test" src="data:video/x-m4v;base64,{0}">'.format(video_encoded)
HTML(data=video_tag)
  • Има библиотеки, като pyvideo, с които можете да обработвате видео и да му правите post processing или анализ.

Линкове до локални файлове

In [40]:
from IPython.display import FileLink, FileLinks
FileLink('01-intro.ipynb')
Out[40]:

Интеракция с шела

! поставен пред реда ще изпълни командата в терминала

%%bash поставен в началото на клетката, ще превърне целия скрипт надолу в изпълним в терминала

In [45]:
!ls
01-intro.ipynb
01-intro.slides.html
03-data-exporation.ipynb
03-overfit-underfit-regularization.ipynb
04-decision-trees.ipynb
06-titanic.ipynb
07-jupyter-tutorial.ipynb
07-model-validation.ipynb
07-model-validation.slides.html
09-svm-transformers-pipelines.ipynb
10-unsupervised-learning.ipynb
11-unsupervised-learning-2.ipynb
12-libraries.ipynb
13-linear-logistic-regression-math.ipynb
14-neural-networks.ipynb
15-tensorflow-keras.ipynb
16-Autoencoders-Word-Embeddings-Copy1.ipynb
16-autoencoders.ipynb
17-word-embeddings.ipynb
18-machine-translation.pdf
19-convolutional-neural-networks.ipynb
20-convolutional-neural-networks-2.ipynb
21-recurrent-neural-networks.pdf
3-prediction-result.png
Model Validation-Copy2.ipynb
Spooky.ipynb
Untitled.ipynb
cache
cnn
da.h5
data
imgs
maxresdefault.jpg
test.txt
vae.h5
vae_encoder.h5
vae_generator.h5
In [46]:
!pwd
!pip freeze | grep pandas
/Users/lachezar/fmi/machine-learning-lectures-private
pandas==0.23.4
In [54]:
%%bash
cp data/jupyter-tutorial/python.md data/jupyter-tutorial/temp.md
rm data/jupyter-tutorial/python.md
ls -lh data/jupyter-tutorial/

mv data/jupyter-tutorial/temp.md data/jupyter-tutorial/python.md
echo "============"
ls -lh data/jupyter-tutorial/
total 56
-rw-r--r--  1 lachezar  staff   9.0K Nov 12 10:27 ipy_logo.png
-rw-r--r--  1 lachezar  staff   6.6K Nov 12 20:05 jupyter-homework.ipynb
-rw-r--r--  1 lachezar  staff   510B Nov 12 10:27 run_me.py
-rw-r--r--  1 lachezar  staff    54B Nov 12 10:27 somepythoncode.py
-rw-r--r--  1 lachezar  staff     0B Nov 13 08:46 temp.md
============
total 56
-rw-r--r--  1 lachezar  staff   9.0K Nov 12 10:27 ipy_logo.png
-rw-r--r--  1 lachezar  staff   6.6K Nov 12 20:05 jupyter-homework.ipynb
-rw-r--r--  1 lachezar  staff     0B Nov 13 08:46 python.md
-rw-r--r--  1 lachezar  staff   510B Nov 12 10:27 run_me.py
-rw-r--r--  1 lachezar  staff    54B Nov 12 10:27 somepythoncode.py

Магически функции

In [55]:
%magic
IPython's 'magic' functions
===========================

The magic function system provides a series of functions which allow you to
control the behavior of IPython itself, plus a lot of system-type
features. There are two kinds of magics, line-oriented and cell-oriented.

Line magics are prefixed with the % character and work much like OS
command-line calls: they get as an argument the rest of the line, where
arguments are passed without parentheses or quotes.  For example, this will
time the given statement::

        %timeit range(1000)

Cell magics are prefixed with a double %%, and they are functions that get as
an argument not only the rest of the line, but also the lines below it in a
separate argument.  These magics are called with two arguments: the rest of the
call line and the body of the cell, consisting of the lines below the first.
For example::

        %%timeit x = numpy.random.randn((100, 100))
        numpy.linalg.svd(x)

will time the execution of the numpy svd routine, running the assignment of x
as part of the setup phase, which is not timed.

In a line-oriented client (the terminal or Qt console IPython), starting a new
input with %% will automatically enter cell mode, and IPython will continue
reading input until a blank line is given.  In the notebook, simply type the
whole cell as one entity, but keep in mind that the %% escape can only be at
the very start of the cell.

NOTE: If you have 'automagic' enabled (via the command line option or with the
%automagic function), you don't need to type in the % explicitly for line
magics; cell magics always require an explicit '%%' escape.  By default,
IPython ships with automagic on, so you should only rarely need the % escape.

Example: typing '%cd mydir' (without the quotes) changes your working directory
to 'mydir', if it exists.

For a list of the available magic functions, use %lsmagic. For a description
of any of them, type %magic_name?, e.g. '%cd?'.

Currently the magic system has the following functions:
%alias:
    Define an alias for a system command.
    
    '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
    
    Then, typing 'alias_name params' will execute the system command 'cmd
    params' (from your underlying operating system).
    
    Aliases have lower precedence than magic functions and Python normal
    variables, so if 'foo' is both a Python variable and an alias, the
    alias can not be executed until 'del foo' removes the Python variable.
    
    You can use the %l specifier in an alias definition to represent the
    whole line when the alias is called.  For example::
    
      In [2]: alias bracket echo "Input in brackets: <%l>"
      In [3]: bracket hello world
      Input in brackets: <hello world>
    
    You can also define aliases with parameters using %s specifiers (one
    per parameter)::
    
      In [1]: alias parts echo first %s second %s
      In [2]: %parts A B
      first A second B
      In [3]: %parts A
      Incorrect number of arguments: 2 expected.
      parts is an alias to: 'echo first %s second %s'
    
    Note that %l and %s are mutually exclusive.  You can only use one or
    the other in your aliases.
    
    Aliases expand Python variables just like system calls using ! or !!
    do: all expressions prefixed with '$' get expanded.  For details of
    the semantic rules, see PEP-215:
    http://www.python.org/peps/pep-0215.html.  This is the library used by
    IPython for variable expansion.  If you want to access a true shell
    variable, an extra $ is necessary to prevent its expansion by
    IPython::
    
      In [6]: alias show echo
      In [7]: PATH='A Python string'
      In [8]: show $PATH
      A Python string
      In [9]: show $$PATH
      /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...
    
    You can use the alias facility to access all of $PATH.  See the %rehashx
    function, which automatically creates aliases for the contents of your
    $PATH.
    
    If called with no parameters, %alias prints the current alias table
    for your system.  For posix systems, the default aliases are 'cat',
    'cp', 'mv', 'rm', 'rmdir', and 'mkdir', and other platform-specific
    aliases are added.  For windows-based systems, the default aliases are
    'copy', 'ddir', 'echo', 'ls', 'ldir', 'mkdir', 'ren', and 'rmdir'.
    
    You can see the definition of alias by adding a question mark in the
    end::
    
      In [1]: cat?
      Repr: <alias cat for 'cat'>
%alias_magic:
    ::
    
      %alias_magic [-l] [-c] [-p PARAMS] name target
    
    Create an alias for an existing line or cell magic.
    
    Examples
    --------
    ::
    
      In [1]: %alias_magic t timeit
      Created `%t` as an alias for `%timeit`.
      Created `%%t` as an alias for `%%timeit`.
    
      In [2]: %t -n1 pass
      1 loops, best of 3: 954 ns per loop
    
      In [3]: %%t -n1
         ...: pass
         ...:
      1 loops, best of 3: 954 ns per loop
    
      In [4]: %alias_magic --cell whereami pwd
      UsageError: Cell magic function `%%pwd` not found.
      In [5]: %alias_magic --line whereami pwd
      Created `%whereami` as an alias for `%pwd`.
    
      In [6]: %whereami
      Out[6]: u'/home/testuser'
    
      In [7]: %alias_magic h history -p "-l 30" --line
      Created `%h` as an alias for `%history -l 30`.
    
    positional arguments:
      name                  Name of the magic to be created.
      target                Name of the existing line or cell magic.
    
    optional arguments:
      -l, --line            Create a line magic alias.
      -c, --cell            Create a cell magic alias.
      -p PARAMS, --params PARAMS
                            Parameters passed to the magic function.
%autoawait:
    
    Allow to change the status of the autoawait option.
    
    This allow you to set a specific asynchronous code runner.
    
    If no value is passed, print the currently used asynchronous integration
    and whether it is activated.
    
    It can take a number of value evaluated in the following order:
    
    - False/false/off deactivate autoawait integration
    - True/true/on activate autoawait integration using configured default
      loop
    - asyncio/curio/trio activate autoawait integration and use integration
      with said library.
    
    - `sync` turn on the pseudo-sync integration (mostly used for
      `IPython.embed()` which does not run IPython with a real eventloop and
      deactivate running asynchronous code. Turning on Asynchronous code with
      the pseudo sync loop is undefined behavior and may lead IPython to crash.
    
    If the passed parameter does not match any of the above and is a python
    identifier, get said object from user namespace and set it as the
    runner, and activate autoawait. 
    
    If the object is a fully qualified object name, attempt to import it and
    set it as the runner, and activate autoawait.
    
    
    The exact behavior of autoawait is experimental and subject to change
    across version of IPython and Python.
%autocall:
    Make functions callable without having to type parentheses.
    
    Usage:
    
       %autocall [mode]
    
    The mode can be one of: 0->Off, 1->Smart, 2->Full.  If not given, the
    value is toggled on and off (remembering the previous state).
    
    In more detail, these values mean:
    
    0 -> fully disabled
    
    1 -> active, but do not apply if there are no arguments on the line.
    
    In this mode, you get::
    
      In [1]: callable
      Out[1]: <built-in function callable>
    
      In [2]: callable 'hello'
      ------> callable('hello')
      Out[2]: False
    
    2 -> Active always.  Even if no arguments are present, the callable
    object is called::
    
      In [2]: float
      ------> float()
      Out[2]: 0.0
    
    Note that even with autocall off, you can still use '/' at the start of
    a line to treat the first argument on the command line as a function
    and add parentheses to it::
    
      In [8]: /str 43
      ------> str(43)
      Out[8]: '43'
    
    # all-random (note for auto-testing)
%automagic:
    Make magic functions callable without having to type the initial %.
    
    Without arguments toggles on/off (when off, you must call it as
    %automagic, of course).  With arguments it sets the value, and you can
    use any of (case insensitive):
    
     - on, 1, True: to activate
    
     - off, 0, False: to deactivate.
    
    Note that magic functions have lowest priority, so if there's a
    variable whose name collides with that of a magic fn, automagic won't
    work for that function (you get the variable instead). However, if you
    delete the variable (del var), the previously shadowed magic function
    becomes visible to automagic again.
%autosave:
    Set the autosave interval in the notebook (in seconds).
    
    The default value is 120, or two minutes.
    ``%autosave 0`` will disable autosave.
    
    This magic only has an effect when called from the notebook interface.
    It has no effect when called in a startup file.
%bookmark:
    Manage IPython's bookmark system.
    
    %bookmark <name>       - set bookmark to current dir
    %bookmark <name> <dir> - set bookmark to <dir>
    %bookmark -l           - list all bookmarks
    %bookmark -d <name>    - remove bookmark
    %bookmark -r           - remove all bookmarks
    
    You can later on access a bookmarked folder with::
    
      %cd -b <name>
    
    or simply '%cd <name>' if there is no directory called <name> AND
    there is such a bookmark defined.
    
    Your bookmarks persist through IPython sessions, but they are
    associated with each profile.
%cat:
    Alias for `!cat`
%cd:
    Change the current working directory.
    
    This command automatically maintains an internal list of directories
    you visit during your IPython session, in the variable _dh. The
    command %dhist shows this history nicely formatted. You can also
    do 'cd -<tab>' to see directory history conveniently.
    
    Usage:
    
      cd 'dir': changes to directory 'dir'.
    
      cd -: changes to the last visited directory.
    
      cd -<n>: changes to the n-th directory in the directory history.
    
      cd --foo: change to directory that matches 'foo' in history
    
      cd -b <bookmark_name>: jump to a bookmark set by %bookmark
         (note: cd <bookmark_name> is enough if there is no
          directory <bookmark_name>, but a bookmark with the name exists.)
          'cd -b <tab>' allows you to tab-complete bookmark names.
    
    Options:
    
    -q: quiet.  Do not print the working directory after the cd command is
    executed.  By default IPython's cd command does print this directory,
    since the default prompts do not display path information.
    
    Note that !cd doesn't work for this purpose because the shell where
    !command runs is immediately discarded after executing 'command'.
    
    Examples
    --------
    ::
    
      In [10]: cd parent/child
      /home/tsuser/parent/child
%clear:
    Clear the terminal.
%colors:
    Switch color scheme for prompts, info system and exception handlers.
    
    Currently implemented schemes: NoColor, Linux, LightBG.
    
    Color scheme names are not case-sensitive.
    
    Examples
    --------
    To get a plain black and white terminal::
    
      %colors nocolor
%config:
    configure IPython
    
        %config Class[.trait=value]
    
    This magic exposes most of the IPython config system. Any
    Configurable class should be able to be configured with the simple
    line::
    
        %config Class.trait=value
    
    Where `value` will be resolved in the user's namespace, if it is an
    expression or variable name.
    
    Examples
    --------
    
    To see what classes are available for config, pass no arguments::
    
        In [1]: %config
        Available objects for config:
            TerminalInteractiveShell
            HistoryManager
            PrefilterManager
            AliasManager
            IPCompleter
            DisplayFormatter
    
    To view what is configurable on a given class, just pass the class
    name::
    
        In [2]: %config IPCompleter
        IPCompleter options
        -----------------
        IPCompleter.omit__names=<Enum>
            Current: 2
            Choices: (0, 1, 2)
            Instruct the completer to omit private method names
            Specifically, when completing on ``object.<tab>``.
            When 2 [default]: all names that start with '_' will be excluded.
            When 1: all 'magic' names (``__foo__``) will be excluded.
            When 0: nothing will be excluded.
        IPCompleter.merge_completions=<CBool>
            Current: True
            Whether to merge completion results into a single list
            If False, only the completion results from the first non-empty
            completer will be returned.
        IPCompleter.limit_to__all__=<CBool>
            Current: False
            Instruct the completer to use __all__ for the completion
            Specifically, when completing on ``object.<tab>``.
            When True: only those names in obj.__all__ will be included.
            When False [default]: the __all__ attribute is ignored
        IPCompleter.greedy=<CBool>
            Current: False
            Activate greedy completion
            This will enable completion on elements of lists, results of
            function calls, etc., but can be unsafe because the code is
            actually evaluated on TAB.
    
    but the real use is in setting values::
    
        In [3]: %config IPCompleter.greedy = True
    
    and these values are read from the user_ns if they are variables::
    
        In [4]: feeling_greedy=False
    
        In [5]: %config IPCompleter.greedy = feeling_greedy
%connect_info:
    Print information for connecting other clients to this kernel
    
    It will print the contents of this session's connection file, as well as
    shortcuts for local clients.
    
    In the simplest case, when called from the most recently launched kernel,
    secondary clients can be connected, simply with:
    
    $> jupyter <app> --existing
%cp:
    Alias for `!cp`
%debug:
    ::
    
      %debug [--breakpoint FILE:LINE] [statement [statement ...]]
    
    Activate the interactive debugger.
    
    This magic command support two ways of activating debugger.
    One is to activate debugger before executing code.  This way, you
    can set a break point, to step through the code from the point.
    You can use this mode by giving statements to execute and optionally
    a breakpoint.
    
    The other one is to activate debugger in post-mortem mode.  You can
    activate this mode simply running %debug without any argument.
    If an exception has just occurred, this lets you inspect its stack
    frames interactively.  Note that this will always work only on the last
    traceback that occurred, so you must call this quickly after an
    exception that you wish to inspect has fired, because if another one
    occurs, it clobbers the previous one.
    
    If you want IPython to automatically do this on every exception, see
    the %pdb magic for more details.
    
    positional arguments:
      statement             Code to run in debugger. You can omit this in cell
                            magic mode.
    
    optional arguments:
      --breakpoint <FILE:LINE>, -b <FILE:LINE>
                            Set break point at LINE in FILE.
%dhist:
    Print your history of visited directories.
    
    %dhist       -> print full history
    %dhist n     -> print last n entries only
    %dhist n1 n2 -> print entries between n1 and n2 (n2 not included)
    
    This history is automatically maintained by the %cd command, and
    always available as the global list variable _dh. You can use %cd -<n>
    to go to directory number <n>.
    
    Note that most of time, you should view directory history by entering
    cd -<TAB>.
%dirs:
    Return the current directory stack.
%doctest_mode:
    Toggle doctest mode on and off.
    
    This mode is intended to make IPython behave as much as possible like a
    plain Python shell, from the perspective of how its prompts, exceptions
    and output look.  This makes it easy to copy and paste parts of a
    session into doctests.  It does so by:
    
    - Changing the prompts to the classic ``>>>`` ones.
    - Changing the exception reporting mode to 'Plain'.
    - Disabling pretty-printing of output.
    
    Note that IPython also supports the pasting of code snippets that have
    leading '>>>' and '...' prompts in them.  This means that you can paste
    doctests from files or docstrings (even if they have leading
    whitespace), and the code will execute correctly.  You can then use
    '%history -t' to see the translated history; this will give you the
    input after removal of all the leading prompts and whitespace, which
    can be pasted back into an editor.
    
    With these features, you can switch into this mode easily whenever you
    need to do testing and changes to doctests, without having to leave
    your existing IPython session.
%ed:
    Alias for `%edit`.
%edit:
    Bring up an editor and execute the resulting code.
    
    Usage:
      %edit [options] [args]
    
    %edit runs an external text editor. You will need to set the command for
    this editor via the ``TerminalInteractiveShell.editor`` option in your
    configuration file before it will work.
    
    This command allows you to conveniently edit multi-line code right in
    your IPython session.
    
    If called without arguments, %edit opens up an empty editor with a
    temporary file and will execute the contents of this file when you
    close it (don't forget to save it!).
    
    Options:
    
    -n <number>
      Open the editor at a specified line number. By default, the IPython
      editor hook uses the unix syntax 'editor +N filename', but you can
      configure this by providing your own modified hook if your favorite
      editor supports line-number specifications with a different syntax.
    
    -p
      Call the editor with the same data as the previous time it was used,
      regardless of how long ago (in your current session) it was.
    
    -r
      Use 'raw' input. This option only applies to input taken from the
      user's history.  By default, the 'processed' history is used, so that
      magics are loaded in their transformed version to valid Python.  If
      this option is given, the raw input as typed as the command line is
      used instead.  When you exit the editor, it will be executed by
      IPython's own processor.
    
    Arguments:
    
    If arguments are given, the following possibilities exist:
    
    - The arguments are numbers or pairs of colon-separated numbers (like
      1 4:8 9). These are interpreted as lines of previous input to be
      loaded into the editor. The syntax is the same of the %macro command.
    
    - If the argument doesn't start with a number, it is evaluated as a
      variable and its contents loaded into the editor. You can thus edit
      any string which contains python code (including the result of
      previous edits).
    
    - If the argument is the name of an object (other than a string),
      IPython will try to locate the file where it was defined and open the
      editor at the point where it is defined. You can use ``%edit function``
      to load an editor exactly at the point where 'function' is defined,
      edit it and have the file be executed automatically.
    
      If the object is a macro (see %macro for details), this opens up your
      specified editor with a temporary file containing the macro's data.
      Upon exit, the macro is reloaded with the contents of the file.
    
      Note: opening at an exact line is only supported under Unix, and some
      editors (like kedit and gedit up to Gnome 2.8) do not understand the
      '+NUMBER' parameter necessary for this feature. Good editors like
      (X)Emacs, vi, jed, pico and joe all do.
    
    - If the argument is not found as a variable, IPython will look for a
      file with that name (adding .py if necessary) and load it into the
      editor. It will execute its contents with execfile() when you exit,
      loading any code in the file into your interactive namespace.
    
    Unlike in the terminal, this is designed to use a GUI editor, and we do
    not know when it has closed. So the file you edit will not be
    automatically executed or printed.
    
    Note that %edit is also available through the alias %ed.
%env:
    Get, set, or list environment variables.
    
    Usage:
    
      %env: lists all environment variables/values
      %env var: get value for var
      %env var val: set value for var
      %env var=val: set value for var
      %env var=$val: set value for var, using python expansion if possible
%gui:
    Enable or disable IPython GUI event loop integration.
    
    %gui [GUINAME]
    
    This magic replaces IPython's threaded shells that were activated
    using the (pylab/wthread/etc.) command line flags.  GUI toolkits
    can now be enabled at runtime and keyboard
    interrupts should work without any problems.  The following toolkits
    are supported:  wxPython, PyQt4, PyGTK, Tk and Cocoa (OSX)::
    
        %gui wx      # enable wxPython event loop integration
        %gui qt4|qt  # enable PyQt4 event loop integration
        %gui qt5     # enable PyQt5 event loop integration
        %gui gtk     # enable PyGTK event loop integration
        %gui gtk3    # enable Gtk3 event loop integration
        %gui tk      # enable Tk event loop integration
        %gui osx     # enable Cocoa event loop integration
                     # (requires %matplotlib 1.1)
        %gui         # disable all event loop integration
    
    WARNING:  after any of these has been called you can simply create
    an application object, but DO NOT start the event loop yourself, as
    we have already handled that.
%hist:
    Alias for `%history`.
%history:
    ::
    
      %history [-n] [-o] [-p] [-t] [-f FILENAME] [-g [PATTERN [PATTERN ...]]]
                   [-l [LIMIT]] [-u]
                   [range [range ...]]
    
    Print input history (_i<n> variables), with most recent last.
    
    By default, input history is printed without line numbers so it can be
    directly pasted into an editor. Use -n to show them.
    
    By default, all input history from the current session is displayed.
    Ranges of history can be indicated using the syntax:
    
    ``4``
        Line 4, current session
    ``4-6``
        Lines 4-6, current session
    ``243/1-5``
        Lines 1-5, session 243
    ``~2/7``
        Line 7, session 2 before current
    ``~8/1-~6/5``
        From the first line of 8 sessions ago, to the fifth line of 6
        sessions ago.
    
    Multiple ranges can be entered, separated by spaces
    
    The same syntax is used by %macro, %save, %edit, %rerun
    
    Examples
    --------
    ::
    
      In [6]: %history -n 4-6
      4:a = 12
      5:print a**2
      6:%history -n 4-6
    
    positional arguments:
      range
    
    optional arguments:
      -n                    print line numbers for each input. This feature is
                            only available if numbered prompts are in use.
      -o                    also print outputs for each input.
      -p                    print classic '>>>' python prompts before each input.
                            This is useful for making documentation, and in
                            conjunction with -o, for producing doctest-ready
                            output.
      -t                    print the 'translated' history, as IPython understands
                            it. IPython filters your input and converts it all
                            into valid Python source before executing it (things
                            like magics or aliases are turned into function calls,
                            for example). With this option, you'll see the native
                            history instead of the user-entered version: '%cd /'
                            will be seen as 'get_ipython().run_line_magic("cd",
                            "/")' instead of '%cd /'.
      -f FILENAME           FILENAME: instead of printing the output to the
                            screen, redirect it to the given file. The file is
                            always overwritten, though *when it can*, IPython asks
                            for confirmation first. In particular, running the
                            command 'history -f FILENAME' from the IPython
                            Notebook interface will replace FILENAME even if it
                            already exists *without* confirmation.
      -g <[PATTERN [PATTERN ...]]>
                            treat the arg as a glob pattern to search for in
                            (full) history. This includes the saved history
                            (almost all commands ever written). The pattern may
                            contain '?' to match one unknown character and '*' to
                            match any number of unknown characters. Use '%hist -g'
                            to show full saved history (may be very long).
      -l <[LIMIT]>          get the last n lines from all sessions. Specify n as a
                            single arg, or the default is the last 10 lines.
      -u                    when searching history using `-g`, show only unique
                            history.
%killbgscripts:
    Kill all BG processes started by %%script and its family.
%ldir:
    Alias for `!ls -F -G -l %l | grep /$`
%less:
    Show a file through the pager.
    
    Files ending in .py are syntax-highlighted.
%lf:
    Alias for `!ls -F -l -G %l | grep ^-`
%lk:
    Alias for `!ls -F -l -G %l | grep ^l`
%ll:
    Alias for `!ls -F -l -G`
%load:
    Load code into the current frontend.
    
    Usage:
      %load [options] source
    
      where source can be a filename, URL, input history range, macro, or
      element in the user namespace
    
    Options:
    
      -r <lines>: Specify lines or ranges of lines to load from the source.
      Ranges could be specified as x-y (x..y) or in python-style x:y 
      (x..(y-1)). Both limits x and y can be left blank (meaning the 
      beginning and end of the file, respectively).
    
      -s <symbols>: Specify function or classes to load from python source. 
    
      -y : Don't ask confirmation for loading source above 200 000 characters.
    
      -n : Include the user's namespace when searching for source code.
    
    This magic command can either take a local filename, a URL, an history
    range (see %history) or a macro as argument, it will prompt for
    confirmation before loading source with more than 200 000 characters, unless
    -y flag is passed or if the frontend does not support raw_input::
    
    %load myscript.py
    %load 7-27
    %load myMacro
    %load http://www.example.com/myscript.py
    %load -r 5-10 myscript.py
    %load -r 10-20,30,40: foo.py
    %load -s MyClass,wonder_function myscript.py
    %load -n MyClass
    %load -n my_module.wonder_function
%load_ext:
    Load an IPython extension by its module name.
%loadpy:
    Alias of `%load`
    
    `%loadpy` has gained some flexibility and dropped the requirement of a `.py`
    extension. So it has been renamed simply into %load. You can look at
    `%load`'s docstring for more info.
%logoff:
    Temporarily stop logging.
    
    You must have previously started logging.
%logon:
    Restart logging.
    
    This function is for restarting logging which you've temporarily
    stopped with %logoff. For starting logging for the first time, you
    must use the %logstart function, which allows you to specify an
    optional log filename.
%logstart:
    Start logging anywhere in a session.
    
    %logstart [-o|-r|-t|-q] [log_name [log_mode]]
    
    If no name is given, it defaults to a file named 'ipython_log.py' in your
    current directory, in 'rotate' mode (see below).
    
    '%logstart name' saves to file 'name' in 'backup' mode.  It saves your
    history up to that point and then continues logging.
    
    %logstart takes a second optional parameter: logging mode. This can be one
    of (note that the modes are given unquoted):
    
    append
        Keep logging at the end of any existing file.
    
    backup
        Rename any existing file to name~ and start name.
    
    global
        Append to  a single logfile in your home directory.
    
    over
        Overwrite any existing log.
    
    rotate
        Create rotating logs: name.1~, name.2~, etc.
    
    Options:
    
      -o
        log also IPython's output. In this mode, all commands which
        generate an Out[NN] prompt are recorded to the logfile, right after
        their corresponding input line. The output lines are always
        prepended with a '#[Out]# ' marker, so that the log remains valid
        Python code.
    
      Since this marker is always the same, filtering only the output from
      a log is very easy, using for example a simple awk call::
    
        awk -F'#\[Out\]# ' '{if($2) {print $2}}' ipython_log.py
    
      -r
        log 'raw' input.  Normally, IPython's logs contain the processed
        input, so that user lines are logged in their final form, converted
        into valid Python.  For example, %Exit is logged as
        _ip.magic("Exit").  If the -r flag is given, all input is logged
        exactly as typed, with no transformations applied.
    
      -t
        put timestamps before each input line logged (these are put in
        comments).
    
      -q 
        suppress output of logstate message when logging is invoked
%logstate:
    Print the status of the logging system.
%logstop:
    Fully stop logging and close log file.
    
    In order to start logging again, a new %logstart call needs to be made,
    possibly (though not necessarily) with a new filename, mode and other
    options.
%ls:
    Alias for `!ls -F -G`
%lsmagic:
    List currently available magic functions.
%lx:
    Alias for `!ls -F -l -G %l | grep ^-..x`
%macro:
    Define a macro for future re-execution. It accepts ranges of history,
    filenames or string objects.
    
    Usage:
      %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
    
    Options:
    
      -r: use 'raw' input.  By default, the 'processed' history is used,
      so that magics are loaded in their transformed version to valid
      Python.  If this option is given, the raw input as typed at the
      command line is used instead.
    
      -q: quiet macro definition.  By default, a tag line is printed 
      to indicate the macro has been created, and then the contents of 
      the macro are printed.  If this option is given, then no printout
      is produced once the macro is created.
    
    This will define a global variable called `name` which is a string
    made of joining the slices and lines you specify (n1,n2,... numbers
    above) from your input history into a single string. This variable
    acts like an automatic function which re-executes those lines as if
    you had typed them. You just type 'name' at the prompt and the code
    executes.
    
    The syntax for indicating input ranges is described in %history.
    
    Note: as a 'hidden' feature, you can also use traditional python slice
    notation, where N:M means numbers N through M-1.
    
    For example, if your history contains (print using %hist -n )::
    
      44: x=1
      45: y=3
      46: z=x+y
      47: print x
      48: a=5
      49: print 'x',x,'y',y
    
    you can create a macro with lines 44 through 47 (included) and line 49
    called my_macro with::
    
      In [55]: %macro my_macro 44-47 49
    
    Now, typing `my_macro` (without quotes) will re-execute all this code
    in one pass.
    
    You don't need to give the line-numbers in order, and any given line
    number can appear multiple times. You can assemble macros with any
    lines from your input history in any order.
    
    The macro is a simple object which holds its value in an attribute,
    but IPython's display system checks for macros and executes them as
    code instead of printing them when you type their name.
    
    You can view a macro's contents by explicitly printing it with::
    
      print macro_name
%magic:
    Print information about the magic function system.
    
    Supported formats: -latex, -brief, -rest
%man:
    Find the man page for the given command and display in pager.
%matplotlib:
    ::
    
      %matplotlib [-l] [gui]
    
    Set up matplotlib to work interactively.
    
    This function lets you activate matplotlib interactive support
    at any point during an IPython session. It does not import anything
    into the interactive namespace.
    
    If you are using the inline matplotlib backend in the IPython Notebook
    you can set which figure formats are enabled using the following::
    
        In [1]: from IPython.display import set_matplotlib_formats
    
        In [2]: set_matplotlib_formats('pdf', 'svg')
    
    The default for inline figures sets `bbox_inches` to 'tight'. This can
    cause discrepancies between the displayed image and the identical
    image created using `savefig`. This behavior can be disabled using the
    `%config` magic::
    
        In [3]: %config InlineBackend.print_figure_kwargs = {'bbox_inches':None}
    
    In addition, see the docstring of
    `IPython.display.set_matplotlib_formats` and
    `IPython.display.set_matplotlib_close` for more information on
    changing additional behaviors of the inline backend.
    
    Examples
    --------
    To enable the inline backend for usage with the IPython Notebook::
    
        In [1]: %matplotlib inline
    
    In this case, where the matplotlib default is TkAgg::
    
        In [2]: %matplotlib
        Using matplotlib backend: TkAgg
    
    But you can explicitly request a different GUI backend::
    
        In [3]: %matplotlib qt
    
    You can list the available backends using the -l/--list option::
    
       In [4]: %matplotlib --list
       Available matplotlib backends: ['osx', 'qt4', 'qt5', 'gtk3', 'notebook', 'wx', 'qt', 'nbagg',
       'gtk', 'tk', 'inline']
    
    positional arguments:
      gui         Name of the matplotlib backend to use ('agg', 'gtk', 'gtk3',
                  'inline', 'ipympl', 'nbagg', 'notebook', 'osx', 'pdf', 'ps',
                  'qt', 'qt4', 'qt5', 'svg', 'tk', 'widget', 'wx'). If given, the
                  corresponding matplotlib backend is used, otherwise it will be
                  matplotlib's default (which you can set in your matplotlib
                  config file).
    
    optional arguments:
      -l, --list  Show available matplotlib backends
%mkdir:
    Alias for `!mkdir`
%more:
    Show a file through the pager.
    
    Files ending in .py are syntax-highlighted.
%mv:
    Alias for `!mv`
%notebook:
    ::
    
      %notebook filename
    
    Export and convert IPython notebooks.
    
    This function can export the current IPython history to a notebook file.
    For example, to export the history to "foo.ipynb" do "%notebook foo.ipynb".
    
    The -e or --export flag is deprecated in IPython 5.2, and will be
    removed in the future.
    
    positional arguments:
      filename  Notebook name or filename
%page:
    Pretty print the object and display it through a pager.
    
    %page [options] OBJECT
    
    If no object is given, use _ (last output).
    
    Options:
    
      -r: page str(object), don't pretty-print it.
%pastebin:
    Upload code to dpaste's paste bin, returning the URL.
    
    Usage:
      %pastebin [-d "Custom description"] 1-7
    
    The argument can be an input history range, a filename, or the name of a
    string or macro.
    
    Options:
    
      -d: Pass a custom description for the gist. The default will say
          "Pasted from IPython".
%pdb:
    Control the automatic calling of the pdb interactive debugger.
    
    Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
    argument it works as a toggle.
    
    When an exception is triggered, IPython can optionally call the
    interactive pdb debugger after the traceback printout. %pdb toggles
    this feature on and off.
    
    The initial state of this feature is set in your configuration
    file (the option is ``InteractiveShell.pdb``).
    
    If you want to just activate the debugger AFTER an exception has fired,
    without having to type '%pdb on' and rerunning your code, you can use
    the %debug magic.
%pdef:
    Print the call signature for any callable object.
    
    If the object is a class, print the constructor information.
    
    Examples
    --------
    ::
    
      In [3]: %pdef urllib.urlopen
      urllib.urlopen(url, data=None, proxies=None)
%pdoc:
    Print the docstring for an object.
    
    If the given object is a class, it will print both the class and the
    constructor docstrings.
%pfile:
    Print (or run through pager) the file where an object is defined.
    
    The file opens at the line where the object definition begins. IPython
    will honor the environment variable PAGER if set, and otherwise will
    do its best to print the file in a convenient form.
    
    If the given argument is not an object currently defined, IPython will
    try to interpret it as a filename (automatically adding a .py extension
    if needed). You can thus use %pfile as a syntax highlighting code
    viewer.
%pinfo:
    Provide detailed information about an object.
    
    '%pinfo object' is just a synonym for object? or ?object.
%pinfo2:
    Provide extra detailed information about an object.
    
    '%pinfo2 object' is just a synonym for object?? or ??object.
%pip:
    
    Intercept usage of ``pip`` in IPython and direct user to run command outside of IPython.
%popd:
    Change to directory popped off the top of the stack.
%pprint:
    Toggle pretty printing on/off.
%precision:
    Set floating point precision for pretty printing.
    
    Can set either integer precision or a format string.
    
    If numpy has been imported and precision is an int,
    numpy display precision will also be set, via ``numpy.set_printoptions``.
    
    If no argument is given, defaults will be restored.
    
    Examples
    --------
    ::
    
        In [1]: from math import pi
    
        In [2]: %precision 3
        Out[2]: u'%.3f'
    
        In [3]: pi
        Out[3]: 3.142
    
        In [4]: %precision %i
        Out[4]: u'%i'
    
        In [5]: pi
        Out[5]: 3
    
        In [6]: %precision %e
        Out[6]: u'%e'
    
        In [7]: pi**10
        Out[7]: 9.364805e+04
    
        In [8]: %precision
        Out[8]: u'%r'
    
        In [9]: pi**10
        Out[9]: 93648.047476082982
%prun:
    Run a statement through the python code profiler.
    
    Usage, in line mode:
      %prun [options] statement
    
    Usage, in cell mode:
      %%prun [options] [statement]
      code...
      code...
    
    In cell mode, the additional code lines are appended to the (possibly
    empty) statement in the first line.  Cell mode allows you to easily
    profile multiline blocks without having to put them in a separate
    function.
    
    The given statement (which doesn't require quote marks) is run via the
    python profiler in a manner similar to the profile.run() function.
    Namespaces are internally managed to work correctly; profile.run
    cannot be used in IPython because it makes certain assumptions about
    namespaces which do not hold under IPython.
    
    Options:
    
    -l <limit>
      you can place restrictions on what or how much of the
      profile gets printed. The limit value can be:
    
         * A string: only information for function names containing this string
           is printed.
    
         * An integer: only these many lines are printed.
    
         * A float (between 0 and 1): this fraction of the report is printed
           (for example, use a limit of 0.4 to see the topmost 40% only).
    
      You can combine several limits with repeated use of the option. For
      example, ``-l __init__ -l 5`` will print only the topmost 5 lines of
      information about class constructors.
    
    -r
      return the pstats.Stats object generated by the profiling. This
      object has all the information about the profile in it, and you can
      later use it for further analysis or in other functions.
    
    -s <key>
      sort profile by given key. You can provide more than one key
      by using the option several times: '-s key1 -s key2 -s key3...'. The
      default sorting key is 'time'.
    
      The following is copied verbatim from the profile documentation
      referenced below:
    
      When more than one key is provided, additional keys are used as
      secondary criteria when the there is equality in all keys selected
      before them.
    
      Abbreviations can be used for any key names, as long as the
      abbreviation is unambiguous.  The following are the keys currently
      defined:
    
      ============  =====================
      Valid Arg     Meaning
      ============  =====================
      "calls"       call count
      "cumulative"  cumulative time
      "file"        file name
      "module"      file name
      "pcalls"      primitive call count
      "line"        line number
      "name"        function name
      "nfl"         name/file/line
      "stdname"     standard name
      "time"        internal time
      ============  =====================
    
      Note that all sorts on statistics are in descending order (placing
      most time consuming items first), where as name, file, and line number
      searches are in ascending order (i.e., alphabetical). The subtle
      distinction between "nfl" and "stdname" is that the standard name is a
      sort of the name as printed, which means that the embedded line
      numbers get compared in an odd way.  For example, lines 3, 20, and 40
      would (if the file names were the same) appear in the string order
      "20" "3" and "40".  In contrast, "nfl" does a numeric compare of the
      line numbers.  In fact, sort_stats("nfl") is the same as
      sort_stats("name", "file", "line").
    
    -T <filename>
      save profile results as shown on screen to a text
      file. The profile is still shown on screen.
    
    -D <filename>
      save (via dump_stats) profile statistics to given
      filename. This data is in a format understood by the pstats module, and
      is generated by a call to the dump_stats() method of profile
      objects. The profile is still shown on screen.
    
    -q
      suppress output to the pager.  Best used with -T and/or -D above.
    
    If you want to run complete programs under the profiler's control, use
    ``%run -p [prof_opts] filename.py [args to program]`` where prof_opts
    contains profiler specific options as described here.
    
    You can read the complete documentation for the profile module with::
    
      In [1]: import profile; profile.help()
%psearch:
    Search for object in namespaces by wildcard.
    
    %psearch [options] PATTERN [OBJECT TYPE]
    
    Note: ? can be used as a synonym for %psearch, at the beginning or at
    the end: both a*? and ?a* are equivalent to '%psearch a*'.  Still, the
    rest of the command line must be unchanged (options come first), so
    for example the following forms are equivalent
    
    %psearch -i a* function
    -i a* function?
    ?-i a* function
    
    Arguments:
    
      PATTERN
    
      where PATTERN is a string containing * as a wildcard similar to its
      use in a shell.  The pattern is matched in all namespaces on the
      search path. By default objects starting with a single _ are not
      matched, many IPython generated objects have a single
      underscore. The default is case insensitive matching. Matching is
      also done on the attributes of objects and not only on the objects
      in a module.
    
      [OBJECT TYPE]
    
      Is the name of a python type from the types module. The name is
      given in lowercase without the ending type, ex. StringType is
      written string. By adding a type here only objects matching the
      given type are matched. Using all here makes the pattern match all
      types (this is the default).
    
    Options:
    
      -a: makes the pattern match even objects whose names start with a
      single underscore.  These names are normally omitted from the
      search.
    
      -i/-c: make the pattern case insensitive/sensitive.  If neither of
      these options are given, the default is read from your configuration
      file, with the option ``InteractiveShell.wildcards_case_sensitive``.
      If this option is not specified in your configuration file, IPython's
      internal default is to do a case sensitive search.
    
      -e/-s NAMESPACE: exclude/search a given namespace.  The pattern you
      specify can be searched in any of the following namespaces:
      'builtin', 'user', 'user_global','internal', 'alias', where
      'builtin' and 'user' are the search defaults.  Note that you should
      not use quotes when specifying namespaces.
    
      'Builtin' contains the python module builtin, 'user' contains all
      user data, 'alias' only contain the shell aliases and no python
      objects, 'internal' contains objects used by IPython.  The
      'user_global' namespace is only used by embedded IPython instances,
      and it contains module-level globals.  You can add namespaces to the
      search with -s or exclude them with -e (these options can be given
      more than once).
    
    Examples
    --------
    ::
    
      %psearch a*            -> objects beginning with an a
      %psearch -e builtin a* -> objects NOT in the builtin space starting in a
      %psearch a* function   -> all functions beginning with an a
      %psearch re.e*         -> objects beginning with an e in module re
      %psearch r*.e*         -> objects that start with e in modules starting in r
      %psearch r*.* string   -> all strings in modules beginning with r
    
    Case sensitive search::
    
      %psearch -c a*         list all object beginning with lower case a
    
    Show objects beginning with a single _::
    
      %psearch -a _*         list objects beginning with a single underscore
%psource:
    Print (or run through pager) the source code for an object.
%pushd:
    Place the current dir on stack and change directory.
    
    Usage:
      %pushd ['dirname']
%pwd:
    Return the current working directory path.
    
    Examples
    --------
    ::
    
      In [9]: pwd
      Out[9]: '/home/tsuser/sprint/ipython'
%pycat:
    Show a syntax-highlighted file through a pager.
    
    This magic is similar to the cat utility, but it will assume the file
    to be Python source and will show it with syntax highlighting.
    
    This magic command can either take a local filename, an url,
    an history range (see %history) or a macro as argument ::
    
    %pycat myscript.py
    %pycat 7-27
    %pycat myMacro
    %pycat http://www.example.com/myscript.py
%pylab:
    ::
    
      %pylab [--no-import-all] [gui]
    
    Load numpy and matplotlib to work interactively.
    
    This function lets you activate pylab (matplotlib, numpy and
    interactive support) at any point during an IPython session.
    
    %pylab makes the following imports::
    
        import numpy
        import matplotlib
        from matplotlib import pylab, mlab, pyplot
        np = numpy
        plt = pyplot
    
        from IPython.display import display
        from IPython.core.pylabtools import figsize, getfigs
    
        from pylab import *
        from numpy import *
    
    If you pass `--no-import-all`, the last two `*` imports will be excluded.
    
    See the %matplotlib magic for more details about activating matplotlib
    without affecting the interactive namespace.
    
    positional arguments:
      gui              Name of the matplotlib backend to use ('agg', 'gtk',
                       'gtk3', 'inline', 'ipympl', 'nbagg', 'notebook', 'osx',
                       'pdf', 'ps', 'qt', 'qt4', 'qt5', 'svg', 'tk', 'widget',
                       'wx'). If given, the corresponding matplotlib backend is
                       used, otherwise it will be matplotlib's default (which you
                       can set in your matplotlib config file).
    
    optional arguments:
      --no-import-all  Prevent IPython from performing ``import *`` into the
                       interactive namespace. You can govern the default behavior
                       of this flag with the InteractiveShellApp.pylab_import_all
                       configurable.
%qtconsole:
    Open a qtconsole connected to this kernel.
    
    Useful for connecting a qtconsole to running notebooks, for better
    debugging.
%quickref:
    Show a quick reference sheet
%recall:
    Repeat a command, or get command to input line for editing.
    
    %recall and %rep are equivalent.
    
    - %recall (no arguments):
    
    Place a string version of last computation result (stored in the
    special '_' variable) to the next input prompt. Allows you to create
    elaborate command lines without using copy-paste::
    
         In[1]: l = ["hei", "vaan"]
         In[2]: "".join(l)
        Out[2]: heivaan
         In[3]: %recall
         In[4]: heivaan_ <== cursor blinking
    
    %recall 45
    
    Place history line 45 on the next input prompt. Use %hist to find
    out the number.
    
    %recall 1-4
    
    Combine the specified lines into one cell, and place it on the next
    input prompt. See %history for the slice syntax.
    
    %recall foo+bar
    
    If foo+bar can be evaluated in the user namespace, the result is
    placed at the next input prompt. Otherwise, the history is searched
    for lines which contain that substring, and the most recent one is
    placed at the next input prompt.
%rehashx:
    Update the alias table with all executable files in $PATH.
    
    rehashx explicitly checks that every entry in $PATH is a file
    with execute access (os.X_OK).
    
    Under Windows, it checks executability as a match against a
    '|'-separated string of extensions, stored in the IPython config
    variable win_exec_ext.  This defaults to 'exe|com|bat'.
    
    This function also resets the root module cache of module completer,
    used on slow filesystems.
%reload_ext:
    Reload an IPython extension by its module name.
%rep:
    Alias for `%recall`.
%rerun:
    Re-run previous input
    
    By default, you can specify ranges of input history to be repeated
    (as with %history). With no arguments, it will repeat the last line.
    
    Options:
    
      -l <n> : Repeat the last n lines of input, not including the
      current command.
    
      -g foo : Repeat the most recent line which contains foo
%reset:
    Resets the namespace by removing all names defined by the user, if
    called without arguments, or by removing some types of objects, such
    as everything currently in IPython's In[] and Out[] containers (see
    the parameters for details).
    
    Parameters
    ----------
    -f : force reset without asking for confirmation.
    
    -s : 'Soft' reset: Only clears your namespace, leaving history intact.
        References to objects may be kept. By default (without this option),
        we do a 'hard' reset, giving you a new session and removing all
        references to objects from the current session.
    
    in : reset input history
    
    out : reset output history
    
    dhist : reset directory history
    
    array : reset only variables that are NumPy arrays
    
    See Also
    --------
    reset_selective : invoked as ``%reset_selective``
    
    Examples
    --------
    ::
    
      In [6]: a = 1
    
      In [7]: a
      Out[7]: 1
    
      In [8]: 'a' in _ip.user_ns
      Out[8]: True
    
      In [9]: %reset -f
    
      In [1]: 'a' in _ip.user_ns
      Out[1]: False
    
      In [2]: %reset -f in
      Flushing input history
    
      In [3]: %reset -f dhist in
      Flushing directory history
      Flushing input history
    
    Notes
    -----
    Calling this magic from clients that do not implement standard input,
    such as the ipython notebook interface, will reset the namespace
    without confirmation.
%reset_selective:
    Resets the namespace by removing names defined by the user.
    
    Input/Output history are left around in case you need them.
    
    %reset_selective [-f] regex
    
    No action is taken if regex is not included
    
    Options
      -f : force reset without asking for confirmation.
    
    See Also
    --------
    reset : invoked as ``%reset``
    
    Examples
    --------
    
    We first fully reset the namespace so your output looks identical to
    this example for pedagogical reasons; in practice you do not need a
    full reset::
    
      In [1]: %reset -f
    
    Now, with a clean namespace we can make a few variables and use
    ``%reset_selective`` to only delete names that match our regexp::
    
      In [2]: a=1; b=2; c=3; b1m=4; b2m=5; b3m=6; b4m=7; b2s=8
    
      In [3]: who_ls
      Out[3]: ['a', 'b', 'b1m', 'b2m', 'b2s', 'b3m', 'b4m', 'c']
    
      In [4]: %reset_selective -f b[2-3]m
    
      In [5]: who_ls
      Out[5]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
    
      In [6]: %reset_selective -f d
    
      In [7]: who_ls
      Out[7]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
    
      In [8]: %reset_selective -f c
    
      In [9]: who_ls
      Out[9]: ['a', 'b', 'b1m', 'b2s', 'b4m']
    
      In [10]: %reset_selective -f b
    
      In [11]: who_ls
      Out[11]: ['a']
    
    Notes
    -----
    Calling this magic from clients that do not implement standard input,
    such as the ipython notebook interface, will reset the namespace
    without confirmation.
%rm:
    Alias for `!rm`
%rmdir:
    Alias for `!rmdir`
%run:
    Run the named file inside IPython as a program.
    
    Usage::
    
      %run [-n -i -e -G]
           [( -t [-N<N>] | -d [-b<N>] | -p [profile options] )]
           ( -m mod | file ) [args]
    
    Parameters after the filename are passed as command-line arguments to
    the program (put in sys.argv). Then, control returns to IPython's
    prompt.
    
    This is similar to running at a system prompt ``python file args``,
    but with the advantage of giving you IPython's tracebacks, and of
    loading all variables into your interactive namespace for further use
    (unless -p is used, see below).
    
    The file is executed in a namespace initially consisting only of
    ``__name__=='__main__'`` and sys.argv constructed as indicated. It thus
    sees its environment as if it were being run as a stand-alone program
    (except for sharing global objects such as previously imported
    modules). But after execution, the IPython interactive namespace gets
    updated with all variables defined in the program (except for __name__
    and sys.argv). This allows for very convenient loading of code for
    interactive work, while giving each program a 'clean sheet' to run in.
    
    Arguments are expanded using shell-like glob match.  Patterns
    '*', '?', '[seq]' and '[!seq]' can be used.  Additionally,
    tilde '~' will be expanded into user's home directory.  Unlike
    real shells, quotation does not suppress expansions.  Use
    *two* back slashes (e.g. ``\\*``) to suppress expansions.
    To completely disable these expansions, you can use -G flag.
    
    Options:
    
    -n
      __name__ is NOT set to '__main__', but to the running file's name
      without extension (as python does under import).  This allows running
      scripts and reloading the definitions in them without calling code
      protected by an ``if __name__ == "__main__"`` clause.
    
    -i
      run the file in IPython's namespace instead of an empty one. This
      is useful if you are experimenting with code written in a text editor
      which depends on variables defined interactively.
    
    -e
      ignore sys.exit() calls or SystemExit exceptions in the script
      being run.  This is particularly useful if IPython is being used to
      run unittests, which always exit with a sys.exit() call.  In such
      cases you are interested in the output of the test results, not in
      seeing a traceback of the unittest module.
    
    -t
      print timing information at the end of the run.  IPython will give
      you an estimated CPU time consumption for your script, which under
      Unix uses the resource module to avoid the wraparound problems of
      time.clock().  Under Unix, an estimate of time spent on system tasks
      is also given (for Windows platforms this is reported as 0.0).
    
    If -t is given, an additional ``-N<N>`` option can be given, where <N>
    must be an integer indicating how many times you want the script to
    run.  The final timing report will include total and per run results.
    
    For example (testing the script uniq_stable.py)::
    
        In [1]: run -t uniq_stable
    
        IPython CPU timings (estimated):
          User  :    0.19597 s.
          System:        0.0 s.
    
        In [2]: run -t -N5 uniq_stable
    
        IPython CPU timings (estimated):
        Total runs performed: 5
          Times :      Total       Per run
          User  :   0.910862 s,  0.1821724 s.
          System:        0.0 s,        0.0 s.
    
    -d
      run your program under the control of pdb, the Python debugger.
      This allows you to execute your program step by step, watch variables,
      etc.  Internally, what IPython does is similar to calling::
    
          pdb.run('execfile("YOURFILENAME")')
    
      with a breakpoint set on line 1 of your file.  You can change the line
      number for this automatic breakpoint to be <N> by using the -bN option
      (where N must be an integer). For example::
    
          %run -d -b40 myscript
    
      will set the first breakpoint at line 40 in myscript.py.  Note that
      the first breakpoint must be set on a line which actually does
      something (not a comment or docstring) for it to stop execution.
    
      Or you can specify a breakpoint in a different file::
    
          %run -d -b myotherfile.py:20 myscript
    
      When the pdb debugger starts, you will see a (Pdb) prompt.  You must
      first enter 'c' (without quotes) to start execution up to the first
      breakpoint.
    
      Entering 'help' gives information about the use of the debugger.  You
      can easily see pdb's full documentation with "import pdb;pdb.help()"
      at a prompt.
    
    -p
      run program under the control of the Python profiler module (which
      prints a detailed report of execution times, function calls, etc).
    
      You can pass other options after -p which affect the behavior of the
      profiler itself. See the docs for %prun for details.
    
      In this mode, the program's variables do NOT propagate back to the
      IPython interactive namespace (because they remain in the namespace
      where the profiler executes them).
    
      Internally this triggers a call to %prun, see its documentation for
      details on the options available specifically for profiling.
    
    There is one special usage for which the text above doesn't apply:
    if the filename ends with .ipy[nb], the file is run as ipython script,
    just as if the commands were written on IPython prompt.
    
    -m
      specify module name to load instead of script path. Similar to
      the -m option for the python interpreter. Use this option last if you
      want to combine with other %run options. Unlike the python interpreter
      only source modules are allowed no .pyc or .pyo files.
      For example::
    
          %run -m example
    
      will run the example module.
    
    -G
      disable shell-like glob expansion of arguments.
%save:
    Save a set of lines or a macro to a given filename.
    
    Usage:
      %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...
    
    Options:
    
      -r: use 'raw' input.  By default, the 'processed' history is used,
      so that magics are loaded in their transformed version to valid
      Python.  If this option is given, the raw input as typed as the
      command line is used instead.
    
      -f: force overwrite.  If file exists, %save will prompt for overwrite
      unless -f is given.
    
      -a: append to the file instead of overwriting it.
    
    This function uses the same syntax as %history for input ranges,
    then saves the lines to the filename you specify.
    
    It adds a '.py' extension to the file if you don't do so yourself, and
    it asks for confirmation before overwriting existing files.
    
    If `-r` option is used, the default extension is `.ipy`.
%sc:
    Shell capture - run shell command and capture output (DEPRECATED use !).
    
    DEPRECATED. Suboptimal, retained for backwards compatibility.
    
    You should use the form 'var = !command' instead. Example:
    
     "%sc -l myfiles = ls ~" should now be written as
    
     "myfiles = !ls ~"
    
    myfiles.s, myfiles.l and myfiles.n still apply as documented
    below.
    
    --
    %sc [options] varname=command
    
    IPython will run the given command using commands.getoutput(), and
    will then update the user's interactive namespace with a variable
    called varname, containing the value of the call.  Your command can
    contain shell wildcards, pipes, etc.
    
    The '=' sign in the syntax is mandatory, and the variable name you
    supply must follow Python's standard conventions for valid names.
    
    (A special format without variable name exists for internal use)
    
    Options:
    
      -l: list output.  Split the output on newlines into a list before
      assigning it to the given variable.  By default the output is stored
      as a single string.
    
      -v: verbose.  Print the contents of the variable.
    
    In most cases you should not need to split as a list, because the
    returned value is a special type of string which can automatically
    provide its contents either as a list (split on newlines) or as a
    space-separated string.  These are convenient, respectively, either
    for sequential processing or to be passed to a shell command.
    
    For example::
    
        # Capture into variable a
        In [1]: sc a=ls *py
    
        # a is a string with embedded newlines
        In [2]: a
        Out[2]: 'setup.py\nwin32_manual_post_install.py'
    
        # which can be seen as a list:
        In [3]: a.l
        Out[3]: ['setup.py', 'win32_manual_post_install.py']
    
        # or as a whitespace-separated string:
        In [4]: a.s
        Out[4]: 'setup.py win32_manual_post_install.py'
    
        # a.s is useful to pass as a single command line:
        In [5]: !wc -l $a.s
          146 setup.py
          130 win32_manual_post_install.py
          276 total
    
        # while the list form is useful to loop over:
        In [6]: for f in a.l:
          ...:      !wc -l $f
          ...:
        146 setup.py
        130 win32_manual_post_install.py
    
    Similarly, the lists returned by the -l option are also special, in
    the sense that you can equally invoke the .s attribute on them to
    automatically get a whitespace-separated string from their contents::
    
        In [7]: sc -l b=ls *py
    
        In [8]: b
        Out[8]: ['setup.py', 'win32_manual_post_install.py']
    
        In [9]: b.s
        Out[9]: 'setup.py win32_manual_post_install.py'
    
    In summary, both the lists and strings used for output capture have
    the following special attributes::
    
        .l (or .list) : value as list.
        .n (or .nlstr): value as newline-separated string.
        .s (or .spstr): value as space-separated string.
%set_env:
    Set environment variables.  Assumptions are that either "val" is a
    name in the user namespace, or val is something that evaluates to a
    string.
    
    Usage:
      %set_env var val: set value for var
      %set_env var=val: set value for var
      %set_env var=$val: set value for var, using python expansion if possible
%store:
    Lightweight persistence for python variables.
    
    Example::
    
      In [1]: l = ['hello',10,'world']
      In [2]: %store l
      In [3]: exit
    
      (IPython session is closed and started again...)
    
      ville@badger:~$ ipython
      In [1]: l
      NameError: name 'l' is not defined
      In [2]: %store -r
      In [3]: l
      Out[3]: ['hello', 10, 'world']
    
    Usage:
    
    * ``%store``          - Show list of all variables and their current
                            values
    * ``%store spam``     - Store the *current* value of the variable spam
                            to disk
    * ``%store -d spam``  - Remove the variable and its value from storage
    * ``%store -z``       - Remove all variables from storage
    * ``%store -r``       - Refresh all variables from store (overwrite
                            current vals)
    * ``%store -r spam bar`` - Refresh specified variables from store
                               (delete current val)
    * ``%store foo >a.txt``  - Store value of foo to new file a.txt
    * ``%store foo >>a.txt`` - Append value of foo to file a.txt
    
    It should be noted that if you change the value of a variable, you
    need to %store it again if you want to persist the new value.
    
    Note also that the variables will need to be pickleable; most basic
    python types can be safely %store'd.
    
    Also aliases can be %store'd across sessions.
%sx:
    Shell execute - run shell command and capture output (!! is short-hand).
    
    %sx command
    
    IPython will run the given command using commands.getoutput(), and
    return the result formatted as a list (split on '\n').  Since the
    output is _returned_, it will be stored in ipython's regular output
    cache Out[N] and in the '_N' automatic variables.
    
    Notes:
    
    1) If an input line begins with '!!', then %sx is automatically
    invoked.  That is, while::
    
      !ls
    
    causes ipython to simply issue system('ls'), typing::
    
      !!ls
    
    is a shorthand equivalent to::
    
      %sx ls
    
    2) %sx differs from %sc in that %sx automatically splits into a list,
    like '%sc -l'.  The reason for this is to make it as easy as possible
    to process line-oriented shell output via further python commands.
    %sc is meant to provide much finer control, but requires more
    typing.
    
    3) Just like %sc -l, this is a list with special attributes:
    ::
    
      .l (or .list) : value as list.
      .n (or .nlstr): value as newline-separated string.
      .s (or .spstr): value as whitespace-separated string.
    
    This is very useful when trying to use such lists as arguments to
    system commands.
%system:
    Shell execute - run shell command and capture output (!! is short-hand).
    
    %sx command
    
    IPython will run the given command using commands.getoutput(), and
    return the result formatted as a list (split on '\n').  Since the
    output is _returned_, it will be stored in ipython's regular output
    cache Out[N] and in the '_N' automatic variables.
    
    Notes:
    
    1) If an input line begins with '!!', then %sx is automatically
    invoked.  That is, while::
    
      !ls
    
    causes ipython to simply issue system('ls'), typing::
    
      !!ls
    
    is a shorthand equivalent to::
    
      %sx ls
    
    2) %sx differs from %sc in that %sx automatically splits into a list,
    like '%sc -l'.  The reason for this is to make it as easy as possible
    to process line-oriented shell output via further python commands.
    %sc is meant to provide much finer control, but requires more
    typing.
    
    3) Just like %sc -l, this is a list with special attributes:
    ::
    
      .l (or .list) : value as list.
      .n (or .nlstr): value as newline-separated string.
      .s (or .spstr): value as whitespace-separated string.
    
    This is very useful when trying to use such lists as arguments to
    system commands.
%tb:
    Print the last traceback with the currently active exception mode.
    
    See %xmode for changing exception reporting modes.
%time:
    Time execution of a Python statement or expression.
    
    The CPU and wall clock times are printed, and the value of the
    expression (if any) is returned.  Note that under Win32, system time
    is always reported as 0, since it can not be measured.
    
    This function can be used both as a line and cell magic:
    
    - In line mode you can time a single-line statement (though multiple
      ones can be chained with using semicolons).
    
    - In cell mode, you can time the cell body (a directly 
      following statement raises an error).
    
    This function provides very basic timing functionality.  Use the timeit 
    magic for more control over the measurement.
    
    Examples
    --------
    ::
    
      In [1]: %time 2**128
      CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
      Wall time: 0.00
      Out[1]: 340282366920938463463374607431768211456L
    
      In [2]: n = 1000000
    
      In [3]: %time sum(range(n))
      CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
      Wall time: 1.37
      Out[3]: 499999500000L
    
      In [4]: %time print 'hello world'
      hello world
      CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
      Wall time: 0.00
    
      Note that the time needed by Python to compile the given expression
      will be reported if it is more than 0.1s.  In this example, the
      actual exponentiation is done by Python at compilation time, so while
      the expression can take a noticeable amount of time to compute, that
      time is purely due to the compilation:
    
      In [5]: %time 3**9999;
      CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
      Wall time: 0.00 s
    
      In [6]: %time 3**999999;
      CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
      Wall time: 0.00 s
      Compiler : 0.78 s
%timeit:
    Time execution of a Python statement or expression
    
    Usage, in line mode:
      %timeit [-n<N> -r<R> [-t|-c] -q -p<P> -o] statement
    or in cell mode:
      %%timeit [-n<N> -r<R> [-t|-c] -q -p<P> -o] setup_code
      code
      code...
    
    Time execution of a Python statement or expression using the timeit
    module.  This function can be used both as a line and cell magic:
    
    - In line mode you can time a single-line statement (though multiple
      ones can be chained with using semicolons).
    
    - In cell mode, the statement in the first line is used as setup code
      (executed but not timed) and the body of the cell is timed.  The cell
      body has access to any variables created in the setup code.
    
    Options:
    -n<N>: execute the given statement <N> times in a loop. If <N> is not
    provided, <N> is determined so as to get sufficient accuracy.
    
    -r<R>: number of repeats <R>, each consisting of <N> loops, and take the
    best result.
    Default: 7
    
    -t: use time.time to measure the time, which is the default on Unix.
    This function measures wall time.
    
    -c: use time.clock to measure the time, which is the default on
    Windows and measures wall time. On Unix, resource.getrusage is used
    instead and returns the CPU user time.
    
    -p<P>: use a precision of <P> digits to display the timing result.
    Default: 3
    
    -q: Quiet, do not print result.
    
    -o: return a TimeitResult that can be stored in a variable to inspect
        the result in more details.
    
    
    Examples
    --------
    ::
    
      In [1]: %timeit pass
      8.26 ns ± 0.12 ns per loop (mean ± std. dev. of 7 runs, 100000000 loops each)
    
      In [2]: u = None
    
      In [3]: %timeit u is None
      29.9 ns ± 0.643 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
    
      In [4]: %timeit -r 4 u == None
    
      In [5]: import time
    
      In [6]: %timeit -n1 time.sleep(2)
    
    
    The times reported by %timeit will be slightly higher than those
    reported by the timeit.py script when variables are accessed. This is
    due to the fact that %timeit executes the statement in the namespace
    of the shell, compared with timeit.py, which uses a single setup
    statement to import function or create variables. Generally, the bias
    does not matter as long as results from timeit.py are not mixed with
    those from %timeit.
%unalias:
    Remove an alias
%unload_ext:
    Unload an IPython extension by its module name.
    
    Not all extensions can be unloaded, only those which define an
    ``unload_ipython_extension`` function.
%who:
    Print all interactive variables, with some minimal formatting.
    
    If any arguments are given, only variables whose type matches one of
    these are printed.  For example::
    
      %who function str
    
    will only list functions and strings, excluding all other types of
    variables.  To find the proper type names, simply use type(var) at a
    command line to see how python prints type names.  For example:
    
    ::
    
      In [1]: type('hello')
      Out[1]: <type 'str'>
    
    indicates that the type name for strings is 'str'.
    
    ``%who`` always excludes executed names loaded through your configuration
    file and things which are internal to IPython.
    
    This is deliberate, as typically you may load many modules and the
    purpose of %who is to show you only what you've manually defined.
    
    Examples
    --------
    
    Define two variables and list them with who::
    
      In [1]: alpha = 123
    
      In [2]: beta = 'test'
    
      In [3]: %who
      alpha   beta
    
      In [4]: %who int
      alpha
    
      In [5]: %who str
      beta
%who_ls:
    Return a sorted list of all interactive variables.
    
    If arguments are given, only variables of types matching these
    arguments are returned.
    
    Examples
    --------
    
    Define two variables and list them with who_ls::
    
      In [1]: alpha = 123
    
      In [2]: beta = 'test'
    
      In [3]: %who_ls
      Out[3]: ['alpha', 'beta']
    
      In [4]: %who_ls int
      Out[4]: ['alpha']
    
      In [5]: %who_ls str
      Out[5]: ['beta']
%whos:
    Like %who, but gives some extra information about each variable.
    
    The same type filtering of %who can be applied here.
    
    For all variables, the type is printed. Additionally it prints:
    
      - For {},[],(): their length.
    
      - For numpy arrays, a summary with shape, number of
        elements, typecode and size in memory.
    
      - Everything else: a string representation, snipping their middle if
        too long.
    
    Examples
    --------
    
    Define two variables and list them with whos::
    
      In [1]: alpha = 123
    
      In [2]: beta = 'test'
    
      In [3]: %whos
      Variable   Type        Data/Info
      --------------------------------
      alpha      int         123
      beta       str         test
%xdel:
    Delete a variable, trying to clear it from anywhere that
    IPython's machinery has references to it. By default, this uses
    the identity of the named object in the user namespace to remove
    references held under other names. The object is also removed
    from the output history.
    
    Options
      -n : Delete the specified name from all namespaces, without
      checking their identity.
%xmode:
    Switch modes for the exception handlers.
    
    Valid modes: Plain, Context and Verbose.
    
    If called without arguments, acts as a toggle.
%%!:
    Shell execute - run shell command and capture output (!! is short-hand).
    
    %sx command
    
    IPython will run the given command using commands.getoutput(), and
    return the result formatted as a list (split on '\n').  Since the
    output is _returned_, it will be stored in ipython's regular output
    cache Out[N] and in the '_N' automatic variables.
    
    Notes:
    
    1) If an input line begins with '!!', then %sx is automatically
    invoked.  That is, while::
    
      !ls
    
    causes ipython to simply issue system('ls'), typing::
    
      !!ls
    
    is a shorthand equivalent to::
    
      %sx ls
    
    2) %sx differs from %sc in that %sx automatically splits into a list,
    like '%sc -l'.  The reason for this is to make it as easy as possible
    to process line-oriented shell output via further python commands.
    %sc is meant to provide much finer control, but requires more
    typing.
    
    3) Just like %sc -l, this is a list with special attributes:
    ::
    
      .l (or .list) : value as list.
      .n (or .nlstr): value as newline-separated string.
      .s (or .spstr): value as whitespace-separated string.
    
    This is very useful when trying to use such lists as arguments to
    system commands.
%%HTML:
    Alias for `%%html`.
%%SVG:
    Alias for `%%svg`.
%%bash:
    %%bash script magic
    
    Run cells with bash in a subprocess.
    
    This is a shortcut for `%%script bash`
%%capture:
    ::
    
      %capture [--no-stderr] [--no-stdout] [--no-display] [output]
    
    run the cell, capturing stdout, stderr, and IPython's rich display() calls.
    
    positional arguments:
      output        The name of the variable in which to store output. This is a
                    utils.io.CapturedIO object with stdout/err attributes for the
                    text of the captured output. CapturedOutput also has a show()
                    method for displaying the output, and __call__ as well, so you
                    can use that to quickly display the output. If unspecified,
                    captured output is discarded.
    
    optional arguments:
      --no-stderr   Don't capture stderr.
      --no-stdout   Don't capture stdout.
      --no-display  Don't capture IPython's rich display.
%%debug:
    ::
    
      %debug [--breakpoint FILE:LINE] [statement [statement ...]]
    
    Activate the interactive debugger.
    
    This magic command support two ways of activating debugger.
    One is to activate debugger before executing code.  This way, you
    can set a break point, to step through the code from the point.
    You can use this mode by giving statements to execute and optionally
    a breakpoint.
    
    The other one is to activate debugger in post-mortem mode.  You can
    activate this mode simply running %debug without any argument.
    If an exception has just occurred, this lets you inspect its stack
    frames interactively.  Note that this will always work only on the last
    traceback that occurred, so you must call this quickly after an
    exception that you wish to inspect has fired, because if another one
    occurs, it clobbers the previous one.
    
    If you want IPython to automatically do this on every exception, see
    the %pdb magic for more details.
    
    positional arguments:
      statement             Code to run in debugger. You can omit this in cell
                            magic mode.
    
    optional arguments:
      --breakpoint <FILE:LINE>, -b <FILE:LINE>
                            Set break point at LINE in FILE.
%%file:
    Alias for `%%writefile`.
%%html:
    ::
    
      %html [--isolated]
    
    Render the cell as a block of HTML
    
    optional arguments:
      --isolated  Annotate the cell as 'isolated'. Isolated cells are rendered
                  inside their own <iframe> tag
%%javascript:
    Run the cell block of Javascript code
%%js:
    Run the cell block of Javascript code
    
    Alias of `%%javascript`
%%latex:
    Render the cell as a block of latex
    
    The subset of latex which is support depends on the implementation in
    the client.  In the Jupyter Notebook, this magic only renders the subset
    of latex defined by MathJax
    [here](https://docs.mathjax.org/en/v2.5-latest/tex.html).
%%markdown:
    Render the cell as Markdown text block
%%perl:
    %%perl script magic
    
    Run cells with perl in a subprocess.
    
    This is a shortcut for `%%script perl`
%%prun:
    Run a statement through the python code profiler.
    
    Usage, in line mode:
      %prun [options] statement
    
    Usage, in cell mode:
      %%prun [options] [statement]
      code...
      code...
    
    In cell mode, the additional code lines are appended to the (possibly
    empty) statement in the first line.  Cell mode allows you to easily
    profile multiline blocks without having to put them in a separate
    function.
    
    The given statement (which doesn't require quote marks) is run via the
    python profiler in a manner similar to the profile.run() function.
    Namespaces are internally managed to work correctly; profile.run
    cannot be used in IPython because it makes certain assumptions about
    namespaces which do not hold under IPython.
    
    Options:
    
    -l <limit>
      you can place restrictions on what or how much of the
      profile gets printed. The limit value can be:
    
         * A string: only information for function names containing this string
           is printed.
    
         * An integer: only these many lines are printed.
    
         * A float (between 0 and 1): this fraction of the report is printed
           (for example, use a limit of 0.4 to see the topmost 40% only).
    
      You can combine several limits with repeated use of the option. For
      example, ``-l __init__ -l 5`` will print only the topmost 5 lines of
      information about class constructors.
    
    -r
      return the pstats.Stats object generated by the profiling. This
      object has all the information about the profile in it, and you can
      later use it for further analysis or in other functions.
    
    -s <key>
      sort profile by given key. You can provide more than one key
      by using the option several times: '-s key1 -s key2 -s key3...'. The
      default sorting key is 'time'.
    
      The following is copied verbatim from the profile documentation
      referenced below:
    
      When more than one key is provided, additional keys are used as
      secondary criteria when the there is equality in all keys selected
      before them.
    
      Abbreviations can be used for any key names, as long as the
      abbreviation is unambiguous.  The following are the keys currently
      defined:
    
      ============  =====================
      Valid Arg     Meaning
      ============  =====================
      "calls"       call count
      "cumulative"  cumulative time
      "file"        file name
      "module"      file name
      "pcalls"      primitive call count
      "line"        line number
      "name"        function name
      "nfl"         name/file/line
      "stdname"     standard name
      "time"        internal time
      ============  =====================
    
      Note that all sorts on statistics are in descending order (placing
      most time consuming items first), where as name, file, and line number
      searches are in ascending order (i.e., alphabetical). The subtle
      distinction between "nfl" and "stdname" is that the standard name is a
      sort of the name as printed, which means that the embedded line
      numbers get compared in an odd way.  For example, lines 3, 20, and 40
      would (if the file names were the same) appear in the string order
      "20" "3" and "40".  In contrast, "nfl" does a numeric compare of the
      line numbers.  In fact, sort_stats("nfl") is the same as
      sort_stats("name", "file", "line").
    
    -T <filename>
      save profile results as shown on screen to a text
      file. The profile is still shown on screen.
    
    -D <filename>
      save (via dump_stats) profile statistics to given
      filename. This data is in a format understood by the pstats module, and
      is generated by a call to the dump_stats() method of profile
      objects. The profile is still shown on screen.
    
    -q
      suppress output to the pager.  Best used with -T and/or -D above.
    
    If you want to run complete programs under the profiler's control, use
    ``%run -p [prof_opts] filename.py [args to program]`` where prof_opts
    contains profiler specific options as described here.
    
    You can read the complete documentation for the profile module with::
    
      In [1]: import profile; profile.help()
%%pypy:
    %%pypy script magic
    
    Run cells with pypy in a subprocess.
    
    This is a shortcut for `%%script pypy`
%%python:
    %%python script magic
    
    Run cells with python in a subprocess.
    
    This is a shortcut for `%%script python`
%%python2:
    %%python2 script magic
    
    Run cells with python2 in a subprocess.
    
    This is a shortcut for `%%script python2`
%%python3:
    %%python3 script magic
    
    Run cells with python3 in a subprocess.
    
    This is a shortcut for `%%script python3`
%%ruby:
    %%ruby script magic
    
    Run cells with ruby in a subprocess.
    
    This is a shortcut for `%%script ruby`
%%script:
    ::
    
      %shebang [--no-raise-error] [--proc PROC] [--bg] [--err ERR] [--out OUT]
    
    Run a cell via a shell command
    
    The `%%script` line is like the #! line of script,
    specifying a program (bash, perl, ruby, etc.) with which to run.
    
    The rest of the cell is run by that program.
    
    Examples
    --------
    ::
    
        In [1]: %%script bash
           ...: for i in 1 2 3; do
           ...:   echo $i
           ...: done
        1
        2
        3
    
    optional arguments:
      --no-raise-error  Whether you should raise an error message in addition to a
                        stream on stderr if you get a nonzero exit code.
      --proc PROC       The variable in which to store Popen instance. This is
                        used only when --bg option is given.
      --bg              Whether to run the script in the background. If given, the
                        only way to see the output of the command is with
                        --out/err.
      --err ERR         The variable in which to store stderr from the script. If
                        the script is backgrounded, this will be the stderr
                        *pipe*, instead of the stderr text itself and will not be
                        autoclosed.
      --out OUT         The variable in which to store stdout from the script. If
                        the script is backgrounded, this will be the stdout
                        *pipe*, instead of the stderr text itself and will not be
                        auto closed.
%%sh:
    %%sh script magic
    
    Run cells with sh in a subprocess.
    
    This is a shortcut for `%%script sh`
%%svg:
    Render the cell as an SVG literal
%%sx:
    Shell execute - run shell command and capture output (!! is short-hand).
    
    %sx command
    
    IPython will run the given command using commands.getoutput(), and
    return the result formatted as a list (split on '\n').  Since the
    output is _returned_, it will be stored in ipython's regular output
    cache Out[N] and in the '_N' automatic variables.
    
    Notes:
    
    1) If an input line begins with '!!', then %sx is automatically
    invoked.  That is, while::
    
      !ls
    
    causes ipython to simply issue system('ls'), typing::
    
      !!ls
    
    is a shorthand equivalent to::
    
      %sx ls
    
    2) %sx differs from %sc in that %sx automatically splits into a list,
    like '%sc -l'.  The reason for this is to make it as easy as possible
    to process line-oriented shell output via further python commands.
    %sc is meant to provide much finer control, but requires more
    typing.
    
    3) Just like %sc -l, this is a list with special attributes:
    ::
    
      .l (or .list) : value as list.
      .n (or .nlstr): value as newline-separated string.
      .s (or .spstr): value as whitespace-separated string.
    
    This is very useful when trying to use such lists as arguments to
    system commands.
%%system:
    Shell execute - run shell command and capture output (!! is short-hand).
    
    %sx command
    
    IPython will run the given command using commands.getoutput(), and
    return the result formatted as a list (split on '\n').  Since the
    output is _returned_, it will be stored in ipython's regular output
    cache Out[N] and in the '_N' automatic variables.
    
    Notes:
    
    1) If an input line begins with '!!', then %sx is automatically
    invoked.  That is, while::
    
      !ls
    
    causes ipython to simply issue system('ls'), typing::
    
      !!ls
    
    is a shorthand equivalent to::
    
      %sx ls
    
    2) %sx differs from %sc in that %sx automatically splits into a list,
    like '%sc -l'.  The reason for this is to make it as easy as possible
    to process line-oriented shell output via further python commands.
    %sc is meant to provide much finer control, but requires more
    typing.
    
    3) Just like %sc -l, this is a list with special attributes:
    ::
    
      .l (or .list) : value as list.
      .n (or .nlstr): value as newline-separated string.
      .s (or .spstr): value as whitespace-separated string.
    
    This is very useful when trying to use such lists as arguments to
    system commands.
%%time:
    Time execution of a Python statement or expression.
    
    The CPU and wall clock times are printed, and the value of the
    expression (if any) is returned.  Note that under Win32, system time
    is always reported as 0, since it can not be measured.
    
    This function can be used both as a line and cell magic:
    
    - In line mode you can time a single-line statement (though multiple
      ones can be chained with using semicolons).
    
    - In cell mode, you can time the cell body (a directly 
      following statement raises an error).
    
    This function provides very basic timing functionality.  Use the timeit 
    magic for more control over the measurement.
    
    Examples
    --------
    ::
    
      In [1]: %time 2**128
      CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
      Wall time: 0.00
      Out[1]: 340282366920938463463374607431768211456L
    
      In [2]: n = 1000000
    
      In [3]: %time sum(range(n))
      CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
      Wall time: 1.37
      Out[3]: 499999500000L
    
      In [4]: %time print 'hello world'
      hello world
      CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
      Wall time: 0.00
    
      Note that the time needed by Python to compile the given expression
      will be reported if it is more than 0.1s.  In this example, the
      actual exponentiation is done by Python at compilation time, so while
      the expression can take a noticeable amount of time to compute, that
      time is purely due to the compilation:
    
      In [5]: %time 3**9999;
      CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
      Wall time: 0.00 s
    
      In [6]: %time 3**999999;
      CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
      Wall time: 0.00 s
      Compiler : 0.78 s
%%timeit:
    Time execution of a Python statement or expression
    
    Usage, in line mode:
      %timeit [-n<N> -r<R> [-t|-c] -q -p<P> -o] statement
    or in cell mode:
      %%timeit [-n<N> -r<R> [-t|-c] -q -p<P> -o] setup_code
      code
      code...
    
    Time execution of a Python statement or expression using the timeit
    module.  This function can be used both as a line and cell magic:
    
    - In line mode you can time a single-line statement (though multiple
      ones can be chained with using semicolons).
    
    - In cell mode, the statement in the first line is used as setup code
      (executed but not timed) and the body of the cell is timed.  The cell
      body has access to any variables created in the setup code.
    
    Options:
    -n<N>: execute the given statement <N> times in a loop. If <N> is not
    provided, <N> is determined so as to get sufficient accuracy.
    
    -r<R>: number of repeats <R>, each consisting of <N> loops, and take the
    best result.
    Default: 7
    
    -t: use time.time to measure the time, which is the default on Unix.
    This function measures wall time.
    
    -c: use time.clock to measure the time, which is the default on
    Windows and measures wall time. On Unix, resource.getrusage is used
    instead and returns the CPU user time.
    
    -p<P>: use a precision of <P> digits to display the timing result.
    Default: 3
    
    -q: Quiet, do not print result.
    
    -o: return a TimeitResult that can be stored in a variable to inspect
        the result in more details.
    
    
    Examples
    --------
    ::
    
      In [1]: %timeit pass
      8.26 ns ± 0.12 ns per loop (mean ± std. dev. of 7 runs, 100000000 loops each)
    
      In [2]: u = None
    
      In [3]: %timeit u is None
      29.9 ns ± 0.643 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
    
      In [4]: %timeit -r 4 u == None
    
      In [5]: import time
    
      In [6]: %timeit -n1 time.sleep(2)
    
    
    The times reported by %timeit will be slightly higher than those
    reported by the timeit.py script when variables are accessed. This is
    due to the fact that %timeit executes the statement in the namespace
    of the shell, compared with timeit.py, which uses a single setup
    statement to import function or create variables. Generally, the bias
    does not matter as long as results from timeit.py are not mixed with
    those from %timeit.
%%writefile:
    ::
    
      %writefile [-a] filename
    
    Write the contents of the cell to a file.
    
    The file will be overwritten unless the -a (--append) flag is specified.
    
    positional arguments:
      filename      file to write
    
    optional arguments:
      -a, --append  Append contents of the cell to an existing file. The file will
                    be created if it does not exist.

Summary of magic functions (from %lsmagic):
Available line magics:
%alias  %alias_magic  %autoawait  %autocall  %automagic  %autosave  %bookmark  %cat  %cd  %clear  %colors  %config  %connect_info  %cp  %debug  %dhist  %dirs  %doctest_mode  %ed  %edit  %env  %gui  %hist  %history  %killbgscripts  %ldir  %less  %lf  %lk  %ll  %load  %load_ext  %loadpy  %logoff  %logon  %logstart  %logstate  %logstop  %ls  %lsmagic  %lx  %macro  %magic  %man  %matplotlib  %mkdir  %more  %mv  %notebook  %page  %pastebin  %pdb  %pdef  %pdoc  %pfile  %pinfo  %pinfo2  %popd  %pprint  %precision  %prun  %psearch  %psource  %pushd  %pwd  %pycat  %pylab  %qtconsole  %quickref  %recall  %rehashx  %reload_ext  %rep  %rerun  %reset  %reset_selective  %rm  %rmdir  %run  %save  %sc  %set_env  %store  %sx  %system  %tb  %time  %timeit  %unalias  %unload_ext  %who  %who_ls  %whos  %xdel  %xmode

Available cell magics:
%%!  %%HTML  %%SVG  %%bash  %%capture  %%debug  %%file  %%html  %%javascript  %%js  %%latex  %%markdown  %%perl  %%prun  %%pypy  %%python  %%python2  %%python3  %%ruby  %%script  %%sh  %%svg  %%sx  %%system  %%time  %%timeit  %%writefile

Automagic is ON, % prefix IS NOT needed for line magics.
In [56]:
%time range(1_000_000)
%time x = list(range(1_000_000))
CPU times: user 4 µs, sys: 0 ns, total: 4 µs
Wall time: 9.78 µs
CPU times: user 25.9 ms, sys: 14.6 ms, total: 40.5 ms
Wall time: 41.5 ms
In [57]:
%%time 
sum = 0
for i in range(1_000_000):
    sum += i
CPU times: user 163 ms, sys: 2.46 ms, total: 165 ms
Wall time: 170 ms
In [58]:
import numpy as np
import math

%time [i * np.log2(i) for i in range(1, 1_000_000)]
%time [i * math.log2(i) for i in range(1, 1_000_000)]
%time [i * i for i in range(1, 1_000_000)]
None
CPU times: user 1.36 s, sys: 25.9 ms, total: 1.38 s
Wall time: 1.42 s
CPU times: user 159 ms, sys: 11.7 ms, total: 171 ms
Wall time: 173 ms
CPU times: user 60.5 ms, sys: 13.7 ms, total: 74.1 ms
Wall time: 74 ms
In [59]:
%time z = np.arange(1,1_000_000)
%time np.log2(z) * z
%time z*z
None
CPU times: user 3.52 ms, sys: 6.36 ms, total: 9.89 ms
Wall time: 7.27 ms
CPU times: user 11.8 ms, sys: 3.32 ms, total: 15.1 ms
Wall time: 23.3 ms
CPU times: user 1.61 ms, sys: 78 µs, total: 1.69 ms
Wall time: 1.2 ms
In [60]:
def slow_operation(x):
    sleep(0.1)
    return x*x
In [61]:
%%prun
x = list(range(10))
for i in x:
    slow_operation(i)
 
         23 function calls in 1.036 seconds

   Ordered by: internal time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
       10    1.022    0.102    1.022    0.102 {built-in method time.sleep}
        1    0.014    0.014    1.036    1.036 <string>:2(<module>)
       10    0.000    0.000    1.022    0.102 <ipython-input-60-77392c038992>:1(slow_operation)
        1    0.000    0.000    1.036    1.036 {built-in method builtins.exec}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}
In [62]:
%%python2
print "Hello"
Hello
In [63]:
%%bash

curl www.google.com/fake
<!DOCTYPE html>
<html lang=en>
  <meta charset=utf-8>
  <meta name=viewport content="initial-scale=1, minimum-scale=1, width=device-width">
  <title>Error 404 (Not Found)!!1</title>
  <style>
    *{margin:0;padding:0}html,code{font:15px/22px arial,sans-serif}html{background:#fff;color:#222;padding:15px}body{margin:7% auto 0;max-width:390px;min-height:180px;padding:30px 0 15px}* > body{background:url(//www.google.com/images/errors/robot.png) 100% 5px no-repeat;padding-right:205px}p{margin:11px 0 22px;overflow:hidden}ins{color:#777;text-decoration:none}a img{border:0}@media screen and (max-width:772px){body{background:none;margin-top:0;max-width:none;padding-right:0}}#logo{background:url(//www.google.com/images/branding/googlelogo/1x/googlelogo_color_150x54dp.png) no-repeat;margin-left:-5px}@media only screen and (min-resolution:192dpi){#logo{background:url(//www.google.com/images/branding/googlelogo/2x/googlelogo_color_150x54dp.png) no-repeat 0% 0%/100% 100%;-moz-border-image:url(//www.google.com/images/branding/googlelogo/2x/googlelogo_color_150x54dp.png) 0}}@media only screen and (-webkit-min-device-pixel-ratio:2){#logo{background:url(//www.google.com/images/branding/googlelogo/2x/googlelogo_color_150x54dp.png) no-repeat;-webkit-background-size:100% 100%}}#logo{display:inline-block;height:54px;width:150px}
  </style>
  <a href=//www.google.com/><span id=logo aria-label=Google></span></a>
  <p><b>404.</b> <ins>That’s an error.</ins>
  <p>The requested URL <code>/fake</code> was not found on this server.  <ins>That’s all we know.</ins>
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  1565  100  1565    0     0  57860      0 --:--:-- --:--:-- --:--:-- 60192
In [67]:
# %load data/jupyter-tutorial/run_me.py
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(1)

x = np.random.normal(5, 2, 10000)
y = np.random.normal(2, 1, 3000000)

xweights = 100 * np.ones_like(x) / x.size
yweights = 100 * np.ones_like(y) / y.size

fig, ax = plt.subplots()
ax.hist(x, weights=xweights, color='lightblue', alpha=0.5, normed=True)
ax.hist(y, weights=yweights, color='salmon', alpha=0.5, normed=True)

ax.set(title='Histogram Comparison', ylabel='% of Dataset in Bin')
ax.margins(0.05)
ax.set_ylim(bottom=0)
plt.show()
/Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6499: MatplotlibDeprecationWarning: 
The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.
  alternative="'density'", removal="3.1")
In [68]:
%matplotlib inline
In [70]:
%run data/jupyter-tutorial/run_me.py
/Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6499: MatplotlibDeprecationWarning: 
The 'normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.
  alternative="'density'", removal="3.1")
In [71]:
%%writefile data/jupyter-tutorial/somepythoncode.py

for n, i in enumerate(range(10), 1):
    print(n, i)
Overwriting data/jupyter-tutorial/somepythoncode.py
In [76]:
# %load data/jupyter-tutorial/somepythoncode.py

for n, i in enumerate(range(10), 1):
    print(n, i)

Exchange between notebooks with %store

In [77]:
somedata = list(range(20))
%store somedata
del somedata
Stored 'somedata' (list)
In [78]:
%store -r somedata
print(somedata)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
In [79]:
%env
Out[79]:
{'TERM_PROGRAM': 'iTerm.app',
 'PYENV_ROOT': '/Users/lachezar/.pyenv',
 'TERM': 'xterm-color',
 'SHELL': '/bin/zsh',
 'TMPDIR': '/var/folders/kd/p6dx_jfx48301jbnh7xgdnjw0000gn/T/',
 'Apple_PubSub_Socket_Render': '/private/tmp/com.apple.launchd.0ei76yVePS/Render',
 'TERM_PROGRAM_VERSION': '3.2.5',
 'TERM_SESSION_ID': 'w0t1p0:1BCD8EA5-E968-4883-9DB9-A9ACA79C5866',
 'PYENV_VERSION': 'fmi',
 'LC_ALL': 'en_US.UTF-8',
 'ZSH': '/Users/lachezar/.oh-my-zsh',
 'USER': 'lachezar',
 'COMMAND_MODE': 'unix2003',
 'SSH_AUTH_SOCK': '/private/tmp/com.apple.launchd.nupsp0i05y/Listeners',
 'PYENV_DIR': '/Users/lachezar/fmi/machine-learning-lectures-private',
 '__CF_USER_TEXT_ENCODING': '0x1F5:0x0:0x0',
 'PYENV_VIRTUALENV_INIT': '1',
 'VIRTUAL_ENV': '/Users/lachezar/.pyenv/versions/3.6.2/envs/fmi',
 'PAGER': 'cat',
 'PYENV_VIRTUAL_ENV': '/Users/lachezar/.pyenv/versions/3.6.2/envs/fmi',
 'LSCOLORS': 'Gxfxcxdxbxegedabagacad',
 'PATH': '/Users/lachezar/.pyenv/versions/fmi/bin:/Users/lachezar/.pyenv/versions/fmi/bin:/usr/local/Cellar/pyenv/1.2.6/libexec:/usr/local/Cellar/pyenv-virtualenv/1.1.1/shims:/Users/lachezar/.pyenv/shims:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin',
 'PWD': '/Users/lachezar/fmi/machine-learning-lectures-private',
 'LANG': 'en_US.UTF-8',
 'ITERM_PROFILE': 'Default',
 'PYENV_HOOK_PATH': '/Users/lachezar/.pyenv/pyenv.d:/usr/local/Cellar/pyenv/1.2.6/pyenv.d:/usr/local/etc/pyenv.d:/etc/pyenv.d:/usr/lib/pyenv/hooks',
 '_OLD_VIRTUAL_PS1': '${ret_status} %{$fg[cyan]%}%c%{$reset_color%} $(git_prompt_info)',
 'XPC_FLAGS': '0x0',
 'XPC_SERVICE_NAME': '0',
 'PYENV_SHELL': 'zsh',
 'SHLVL': '1',
 'HOME': '/Users/lachezar',
 'COLORFGBG': '7;0',
 'ITERM_SESSION_ID': 'w0t1p0:1BCD8EA5-E968-4883-9DB9-A9ACA79C5866',
 'LESS': '-R',
 'LOGNAME': 'lachezar',
 'LC_CTYPE': 'bg_BG.UTF-8',
 'PYENV_ACTIVATE_SHELL': '1',
 'SECURITYSESSIONID': '186aa',
 'COLORTERM': 'truecolor',
 'JPY_PARENT_PID': '21947',
 'CLICOLOR': '1',
 'GIT_PAGER': 'cat',
 'MPLBACKEND': 'module://ipykernel.pylab.backend_inline'}
In [80]:
%env LC_ALL
Out[80]:
'en_US.UTF-8'
In [81]:
%env temp_lacho=TEMPORARY
env: temp_lacho=TEMPORARY
In [82]:
%env temp_lacho
Out[82]:
'TEMPORARY'

Разширения и магически функции - SQL

Могат да се свалят extensions and magis от интернет и клетките могат да се превърнат в друг тип входове: https://github.com/catherinedevlin/ipython-sql

In [84]:
!pip install ipython-sql -U
Requirement already up-to-date: ipython-sql in /Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages (0.3.9)
Requirement already satisfied, skipping upgrade: ipython-genutils>=0.1.0 in /Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages (from ipython-sql) (0.2.0)
Requirement already satisfied, skipping upgrade: sqlalchemy>=0.6.7 in /Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages (from ipython-sql) (1.2.13)
Requirement already satisfied, skipping upgrade: sqlparse in /Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages (from ipython-sql) (0.2.4)
Requirement already satisfied, skipping upgrade: prettytable in /Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages (from ipython-sql) (0.7.2)
Requirement already satisfied, skipping upgrade: ipython>=1.0 in /Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages (from ipython-sql) (7.0.1)
Requirement already satisfied, skipping upgrade: six in /Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages (from ipython-sql) (1.11.0)
Requirement already satisfied, skipping upgrade: jedi>=0.10 in /Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages (from ipython>=1.0->ipython-sql) (0.13.1)
Requirement already satisfied, skipping upgrade: traitlets>=4.2 in /Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages (from ipython>=1.0->ipython-sql) (4.3.2)
Requirement already satisfied, skipping upgrade: backcall in /Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages (from ipython>=1.0->ipython-sql) (0.1.0)
Requirement already satisfied, skipping upgrade: appnope; sys_platform == "darwin" in /Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages (from ipython>=1.0->ipython-sql) (0.1.0)
Requirement already satisfied, skipping upgrade: pygments in /Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages (from ipython>=1.0->ipython-sql) (2.2.0)
Requirement already satisfied, skipping upgrade: prompt-toolkit<2.1.0,>=2.0.0 in /Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages (from ipython>=1.0->ipython-sql) (2.0.5)
Requirement already satisfied, skipping upgrade: pexpect; sys_platform != "win32" in /Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages (from ipython>=1.0->ipython-sql) (4.6.0)
Requirement already satisfied, skipping upgrade: pickleshare in /Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages (from ipython>=1.0->ipython-sql) (0.7.5)
Requirement already satisfied, skipping upgrade: decorator in /Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages (from ipython>=1.0->ipython-sql) (4.3.0)
Requirement already satisfied, skipping upgrade: simplegeneric>0.8 in /Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages (from ipython>=1.0->ipython-sql) (0.8.1)
Requirement already satisfied, skipping upgrade: setuptools>=18.5 in /Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages (from ipython>=1.0->ipython-sql) (28.8.0)
Requirement already satisfied, skipping upgrade: parso>=0.3.0 in /Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages (from jedi>=0.10->ipython>=1.0->ipython-sql) (0.3.1)
Requirement already satisfied, skipping upgrade: wcwidth in /Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages (from prompt-toolkit<2.1.0,>=2.0.0->ipython>=1.0->ipython-sql) (0.1.7)
Requirement already satisfied, skipping upgrade: ptyprocess>=0.5 in /Users/lachezar/.pyenv/versions/3.6.2/envs/fmi/lib/python3.6/site-packages (from pexpect; sys_platform != "win32"->ipython>=1.0->ipython-sql) (0.6.0)
In [85]:
%load_ext sql
In [86]:
%sql sqlite://
Out[86]:
'Connected: @None'
In [87]:
%%sql
CREATE TABLE writer (first_name, last_name, year_of_death);
INSERT INTO writer VALUES ('William', 'Shakespeare', 1616);
INSERT INTO writer VALUES ('Bertold', 'Brecht', 1956);
 * sqlite://
Done.
1 rows affected.
1 rows affected.
Out[87]:
[]
In [88]:
result = %sql select * from writer
result.DataFrame()
 * sqlite://
Done.
Out[88]:
first_name last_name year_of_death
0 William Shakespeare 1616
1 Bertold Brecht 1956

Интерактивни плотове демо:

https://jupyterlab.readthedocs.io/en/latest/index.html

Разгледайте jupyter.org

http://jupyter.org/widgets

Презентационни слайдове от notebook

  • Трябва да посочим всяка клетка какъв тип слайд е
  • File -> Export Notebook as -> Slides